期刊文献+

贝/马复相钢超高周疲劳行为及非夹杂起裂 被引量:4

Very High Cycle Fatigue Behaviors of Bainite/Martensite Multi-phase Steel and Mechanism of Non-inclusion Induced Crack Initiation
在线阅读 下载PDF
导出
摘要 贝/马复相钢具有较低的夹杂物敏感性,组织因素对其超高周疲劳性能具有显著影响。组织因素引起的"非夹杂起裂"成为贝/马复相钢重要的裂纹萌生方式,贝/马复相组织的类型、形态、均匀性、细化程度等都对钢的超高周疲劳性能具有显著影响。讨论了组织纯净化、组织细化和残余奥氏体对贝/马复相钢超高周疲劳性能及其裂纹萌生机制的影响,在合理控制夹杂物水平的基础上,调控复相组织,可以在1 600MPa级别的贝/马复相钢中,获得超高周(循环周次大于108)疲劳强度达到900MPa的优异性能。同时对非夹杂起裂机理进行了初步探讨。 In order to improve the fatigue properties of the steel component used in high speed railway and oil exploration,the bainite/martensite(B/M)multiphase high strength steels with excellent fatigue properties have been developed.Many results showed that the very high cycle fatigue(VHCF)property of B/M steels is less sensitive to the inclusion than that of conventional tempered martensite steels.Hence,both non-inclusion and inclusion-induced crack initiations occurred in the B/M steels under VHCF test.The microstructure morphologies,i.e.,phase types,microstructure homogeneity and refinement degree,could influence the non-inclusion induced crack initiation.The VHCF crack initiation sites are determined by the competition between the inclusion level and the microstructure morphologies of the B/M steels.Enhanced VHCF properties of B/M steels have been achieved through coordinated adjustment of physical and/or chemical metallurgy treatment(e.g.,microstructure optimization and inclusion size reduction).The mechanism of non-inclusion induced crack initiations is also discussed.
出处 《材料导报》 EI CAS CSCD 北大核心 2017年第20期48-52,共5页 Materials Reports
基金 国家自然科学基金面上项目(51271013) 中央高校基本科研业务费(2014JBM101)
关键词 贝氏体 超高周疲劳 非夹杂起裂 复相组织 高强度合金钢 组织纯净化 组织细化 残留奥氏体 bainite very high cycle fatigue non-inclusion induced crack initiation multiphase microstructure high-strength alloy steel purification grain refinement retained austenite
  • 相关文献

参考文献3

二级参考文献104

  • 1周承恩,谢季佳,洪友士.超高周疲劳研究现状及展望[J].机械强度,2004,26(5):526-533. 被引量:20
  • 2李鹤林.油气输送钢管的发展动向与展望[J].焊管,2004,27(6):1-11. 被引量:123
  • 3殷国茂,杨仙,李国昌.中国无缝钢管技术装备的现状分析[J].河北科技大学学报,2005,26(4):259-264. 被引量:6
  • 4Mughrabi H, Herz K, Stark X. Cyclic deformation and fatigue behaviour of alpha-iron mono- and polycrystals. International Journal of Fracture, 1981,17(2): 193 ~ 220.
  • 5Meininger J M, Gibeling J C. Low-cycle fatigue of niobium-1 pct zirconiurn alloys. Metall. Trans., 1992, 23A: 3077~ 3084.
  • 6Stanzl S E, Tschgg E K. Fatigue crack growth and threshold behavior at ultrasonic frequencies. ASTM Special Technical Publication, 1983. 3 ~ 18.
  • 7Furaya Y, Abe T, Matsuoka S. 1010-cycle fatigue properties of 1 800 MPa-class JIS-SUP7spring steel. Fatigue Fract. Engng. Mater. Struct., 2003,26(7): 641 ~ 646.
  • 8Murakami Y, Nomoto T, Ueda T, et al. On the mechanism of fatigue failure in the superlong life regime ( N > 107 cycles), Part Ⅰ: influence of hydrogentrapped by inclusions. Fatigue Fract. Engug. Mater. Struct.,2000, 23(11): 893 ~902.
  • 9Marquis G, Socie D. Long-life torsion fatigue with normal mean stresses.Fatigue Fract. Engug. Mater. Struct., 2000, 23:293 ~ 300.
  • 10Ebara R. Long-term corrosion fatigue behaviour of structural materials. Fatigue Fract. Engng. Mater. Struct., 2002, 25:855 ~ 859.

共引文献66

同被引文献38

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部