期刊文献+

超高周疲劳研究现状及展望 被引量:20

RETROSPECT AND PROSPECT OF VERY HIGH CYCLE FATIGUE
在线阅读 下载PDF
导出
摘要 超高周疲劳是指疲劳周次达到 10 8及其以上时材料的疲劳行为。与一般认识的疲劳行为不同之处是 ,超高周疲劳发生在传统疲劳极限以下 ,因此研究超高周疲劳行为有助于进一步理解疲劳的本质和疲劳机理。文中综述近几年超高周疲劳研究的进展 ,包括超高周疲劳的典型特征 ,如S—N曲线的特点、断口特征、断面上的鱼眼形貌以及裂纹的起源与扩展特征等 ;分析疲劳机理和相关的模型以及简要探讨影响超高周疲劳的一些因素 ,如加载频率、加载方式、氢的作用等。 High cycle fatigue is the most common reasons for failure of components and structures Most of the fatigue tests were accomplished below ten to hundreds millions of cycles in literature However, railway wheels and rails, offshore structures, bridges, etc , have to endure fatigue loads up to ten billion cycles without failure Very high cycle fatigue (VHCF) is the study of fatigue failure behaviors of materials and structures at and beyond hundreds millions of cycles Even in some ferrous materials, which were assumed to have a fatigue limit, very high cycle fatigue failures are detected Till now, there are few of fatigue tests, failure analysis and mechanisms of VHCF fatigue, compared with the abundant result on LCF and HCF regime This paper summarizes works of VHCF fatigue in recent years, such as the observations on fish eye, which is one of the typical characteristics of VHCF fatigue, fracture origin and discussions about the shape of S—N curve, etc The present work also analyzes the fatigue mechanisms and concludes some theoretical models of VHCF fatigue Some possible and prospective aspects of future researches are also proposed
出处 《机械强度》 CAS CSCD 北大核心 2004年第5期526-533,共8页 Journal of Mechanical Strength
关键词 超高周疲劳 疲劳机理 疲劳极限 内部裂纹起源 Very high cycle fatigue Fatigue mechanism Fatigue limit Crack initiation
  • 相关文献

参考文献51

  • 1Miller K J. A historical perspective of the important parameters of metal fatigue; and problems for the next century. In: Wu X R, Wang Z G, eds.,Proceedings of the 7th Intemational Fatigue Congress, Beijing, 1999. 15 ~39.
  • 2Stanzl-Tschegg S E, Mayer H. Variable amplitude loading in the very high cycle regime. Fatigue Fract. Engng. Mater. Struct., 2002, 25:887 ~ 896.
  • 3Tanaka K, Akiniwa Y. Fatigue crack propagation behavior derived from S-N data in very high cycle regime. Fatigue Fract. Engug. Mater. Struct.,2002, 25: 775 ~ 784.
  • 4Lukás P, Kunz L. Specific features of high-cycle and ultra-high-cycle fatigue. Fatigue Fract. Engng. Mater. Struct., 2002, 25:747 ~ 753.
  • 5Murakami Y, YokoyamaNN, NagataJ. Mechanism of fatigue failure in ultralong life regime. Fatigue Fract. Engng. Mater. Struct., 2002, 25:735~ 746.
  • 6Nishijima S, Kanazawa K. Stepwise S-N curve and fish-eye failure in gigacycle fatigue. Fatigue Fract. Engng. Mater. Struct., 1999, 22:601 ~607.
  • 7Wang Q Y, Berard J Y, Dubarre A, et al. Gigacycle fatigue of ferrous alloys. Fatigue Fract. Engng. Mater. Struct., 1999, 22:667 ~ 672.
  • 8Furuya Y, Matsuoka S, Abe T, et al. Gigacycle fatigue properties for highstrength low-alloy steel at 100 Hz, 600 Hz, and 20 kHz. Scripta Materialia,2002, 46(2): 157 ~ 162.
  • 9Stanzl S, Czegley M, Mayer H R,et al. Fatigue crack growth under combined mode Ⅰ and mode Ⅱ loading. In: Wei R P, Gangloff R P, eds.,Fracture Mechanics: Perspectives and Directions, ASTM STP 1020, ASTM,Philadelphia, 1989. 479 ~ 496.
  • 10Stanzl S. A new experimental method for measuring life time and crack growth of materials under multi-stage and random loadings. Ultrasonics,1981, 19:269 ~ 272.

二级参考文献12

  • 1[1]Wang Q Y, Berard J Y, Bathias C, et al. Gigacycle fatigue of ferrous alloys. Fatigue Fract Engng Mater Struct, 1999,22(8): 667 ~ 672.
  • 2[2]Wang Q Y, Berard J Y, Bathias C, et al. High-cycle fatigue crack initiation and propagation behaviour of high-strength spring steel wires. Fatigue Fract Engng Mater Struct, 1999,22(8) :673 - 677.
  • 3[3]Suresh S. Fatigue of materials. 2nd edition, Cambridge, UK: Cambridge University Press, 1998.
  • 4[4]Umezawa, Nagai K. Deformation structure and subsurface fatigue crack generation in austenitic steels at low temperature. Metallurgical and Materials Transactions, 1998,29A:809 ~ 822.
  • 5[5]Umezawa, Nagai K. Subsurface creck generation in high-cycle fatigue for high strength alloys. ISIJ International, 1997, 37(12) :1 170~ 1 179.
  • 6[6]Kanazawa K, Nishijima S. Fatigue fracture of low alloy steel at ultra-highcycle region under elevated temperature condition. Zairyo/Joumal of the Society of Materials Science, Japan, 1997, 46(12): 1 396 ~ 1 401.
  • 7[7]Murakami Y, Nomoto T, Ueda T. Factors influencing the mechanism of supedong fatigue failure in steels. Fatigue Fract Engug Mater Struct, 1999,22(7) :581 ~ 590.
  • 8[8]Nishijima S, Kanazawa K. Stepwise S-N curve and fish-eve failure in gigacyele fatigue. Fatigue Fract Engng Mater Struct. 1999. 22 ( 7 ): 601 ~607.
  • 9[9]Gibert J, Piehler H R. On the nature and crystallographic orientation of subsurface cracks in high cycle fatigue of Ti-6AI4V. Metallurgical and Materials Transactions, 1993,24A: 669 ~ 680.
  • 10[10]Danninger H, Spoljaric D, Weiss B, et al. High cycle fatigue behaviour of Mo alloyed sintered steel. Z. Metallkd, 1998,89:135~ 141.

共引文献20

同被引文献246

引证文献20

二级引证文献127

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部