期刊文献+

非光滑半无限多目标优化问题的对偶性 被引量:2

Duality for Nonsmooth Semi-Infinite Multiobjective Optimization Problems
原文传递
导出
摘要 研究了一个非光滑半无限多目标优化问题(简记为SIMOP)并讨论它的对偶性.本文重点考虑此SIMOP的Mond-Weir型半无限多目标对偶问题,通过对目标函数和约束函数的某种组合赋予Clarke-凸性假设,获得了弱/强/逆对偶结论.文章的一些结论是比较新的,并推广了已有文献的一些结果. This paper deals with a nonsmooth semi-infinite multiobjective optimiza- tion problem (SIMOP, in brief) and discusses its duality. We focus on Mond-Weir type semi-infinite multiobjective dual problem of the SIMOP, and weak/strong/con- verse duality results are obtained by imposing Clarke F-convexity hypotheses on some combinations of objective functions and constraint functions. Some of our results are new and generalize the conclusions in some former literatures.
作者 杨玉红 唐莉萍 YANG Yuhong TANG Liping(School of Mathematical Sciences, Inner Mongolia University, Hohhot 010021 School of Mathematics and Statistics, Yangtze Normal University, Chongqing 408100 College of Mathematics and Statistics, Chongqing Technology and Business University, Chongqing 400067)
出处 《系统科学与数学》 CSCD 北大核心 2017年第7期1633-1645,共13页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金项目(11431004) 国家自然科学基金数学天元青年项目(11626048) 重庆市科委项目(cstc2016jcyjA0178)资助课题
关键词 半无限多目标优化 对偶性 (弱)有效解 Clarke F-凸性. Semi-infinite multiobjective optimization, duality, (weakly) efficient so-lution, clarke F-convexity.
  • 相关文献

参考文献3

二级参考文献13

  • 1ZHENG XiYin,YANG XiaoQi.The structure of weak Pareto solution sets in piecewise linear multiobjective optimization in normed spaces[J].Science China Mathematics,2008,51(7):1243-1256. 被引量:6
  • 2傅万涛.集值映射多目标规划问题的解集的连通性[J].高校应用数学学报(A辑),1994,9(3):321-328. 被引量:6
  • 3陈光亚.向量优化问题某些基础理论及其发展[J].重庆师范大学学报(自然科学版),2005,22(3):6-9. 被引量:8
  • 4Chen X H. Higher-order symmetric duality in nondifferentiable multiobjective programming problems. J Math Anal Appl, 2004, 290:423-435.
  • 5Agarwal R P, Ahmad I, Jayswal A. Higher-order symmetric duality in nondifferentiable multi-objective programming problems involving generalized cone convex functions. Math Comput Modelling, 2010, 52:1644-1650.
  • 6Gupta S K, Kailey N, Sharma M K. Higher-order (F, a, p, d)-convexity and symmetric duality in multiobjective pro- gramming. Comput Math Appl, 2010, 60:2373-2381.
  • 7Gupta S K, Jayswal A. Multiobjective higher-order symmetric duality involving generalized cone-invex functions. Comput Math Appl, 2010, 60:3187-3192.
  • 8Suneja S K, Aggarwal S, Davar S. Multiobjective symmetric duality involving cones. European J Oper Res, 2002, 141: 471-479.
  • 9Gupta T R, Mehndiratta G. Nondifferentiable multiobjective Mond-Weir type second-order symmetric dualiity over cones. Optim Lett, 2010, 4:293-309.
  • 10Yang X M, Yang X Q, Teo K L, et al. Second-order symmetric duality in non-differentiable multiobjective programming with F-convexity. European J Oper Res, 2005, 164:406-416.

共引文献13

同被引文献5

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部