期刊文献+

变动偏序结构下最优元的标量性刻画 被引量:1

Characterizations of Optimal Element with Variable Ordering Structure via Scalarization
在线阅读 下载PDF
导出
摘要 根据变动偏序结构下最优元的两种不同概念,利用Minkouski泛函将变动偏序结构下的最优元转化为数值优化问题,并利用半范数给出最优元的充分性刻画. According to two different notions of optimal element with variable ordering structure ,optimal element has been transferred into real-valued optimal problems by Minkouski function and seminorm been used to characterise the sufficient conditions for optimal element .
作者 张颖 叶仲泉
出处 《西南师范大学学报(自然科学版)》 CAS 北大核心 2015年第5期6-9,共4页 Journal of Southwest China Normal University(Natural Science Edition)
关键词 变动偏序结构 非控元 拟非控元 Minkouski泛函 半范数 variable ordering structure nondominated element minimal element Minkouski functional seminorm
  • 相关文献

参考文献12

  • 1LUC D T. Scalarization of Vector Optimization Problems [J]. Journal of Optimization Theory and Applications, 1987, 55(1): 85-102.
  • 2GUTIERREZ C, JIMENEZ B, NOVO V. On Approximate Solutions in Vector Optimization Problems via Scalarization [J]. Computational Optimization and Applications, 2006, 35(3) : 305- 524.
  • 3戎卫东,杨新民.向量优化及其若干进展[J].运筹学学报,2014,18(1):9-38. 被引量:11
  • 4WACKER M. Multikriterielle Optimierung bei der Registrierung Medizinischer Daten[D]. Erlangen: Universitit Erlan- gen-Ntirnberg, 2008.
  • 5FISCHER B, HABER E, MODERSITZKI J. Mathematics Meets Medicine-an Optimal Alignment [J]. SIAG/OPT Views News, 2008, 19(2): 1-7.
  • 6YU P L. Cone Convexity, Cone Extreme Points, and Nondominated Solutions in Decision Problems with Multiobjeetives [J]. Journal of Optimization Theory and Applications, 1974, 14(3): 319-377.
  • 7BERGSTRESSER K, CHARNES A, YU P L. Generalization of Domination Structures and Nondominated Solutions in Multicriteria Decision Making [J]. Journal of Optimization Theory and Applications, 1976, 18(1) : 3-13.
  • 8CHEN G Y, YANG X Q. Characterizations of Variable Domination Structures via Nonlinear Scalarization [J]. Journal of Optimization Theory and Applications, 2002, 112(1): 97-110.
  • 9EICHFELDER G. Optimal Elements in Vector Optimization with a Variable Ordering Structure [J]. Journal of Optimi- zation Theory and Applications, 2011, 151(2): 217-240.
  • 10EICHFELDER G. Numerical Procedures in Multiobjective Optimization with Variable Ordering Structures [J]. Journal of Optimization Theory and Applications, 2014, 162(2): 489-514.

二级参考文献6

共引文献10

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部