期刊文献+

TensorFlow平台下的视频目标跟踪深度学习模型设计 被引量:38

Deep Learning Model Design of Video Target Tracking Based on TensorFlow Platform
原文传递
导出
摘要 训练模型复杂且训练集庞大导致深度学习的发展受到严重阻碍。使用Google最新开源的TensorFlow软件平台搭建了用于视频目标跟踪的深度学习模型。介绍了深度学习的原理和TensorFlow的平台特性,提出了使用TensorFlow软件平台设计的深度学习模型框架结构,并使用VOT2015标准数据集中的数据设计了相应的实验。经实验验证,该模型具有较高的计算效率和识别精度,并可便捷地调整网络结构,快速找到最优化模型,很好地完成视频目标识别跟踪任务。 Due to the complexity of training model and huge training set of deep learning,the development of deep learning is seriously hindered.We use an open-source platform called TensorFlow developed by Google to build deep learning model for video object recognition and tracking.Some basic theories are introduced including the principles of deep learning and TensorFlow′s properties.The framework of deep learning model developed by TensorFlow is outlined.Experiments are designed based on the standard data in VOT2015.Experimental results show that the model has high computational efficiency and recognition accuracy,and it can adjust network structure easily,find optimal structural model fast and complete video object recognition and tracking task well.
出处 《激光与光电子学进展》 CSCD 北大核心 2017年第9期277-285,共9页 Laser & Optoelectronics Progress
关键词 机器视觉 TensorFlow 深度学习 计算机视觉 目标跟踪 machine vision TensorFlow depth learning computer vision object tracking
  • 相关文献

参考文献11

二级参考文献215

  • 1李宏顺,刘伟.用逆向蒙特卡罗法分析卫星遥感中的邻近效应[J].华中科技大学学报(自然科学版),2004,32(11):1-3. 被引量:10
  • 2任翠池,杨淑莹,洪俊.基于BP神经网络的手写字符识别[J].天津理工大学学报,2006,22(4):80-82. 被引量:4
  • 3张斌,赵玮烨,李积宪.基于BP神经网络的手写字符识别系统[J].兰州交通大学学报,2007,26(1):18-20. 被引量:1
  • 4金连文,徐秉铮.基于多级神经网络结构的手写体汉字识别[J].通信学报,1997,18(5):21-27. 被引量:19
  • 5Alex Krizhevsky, Ilya Sutskever, Geoff Hinton. Imagenet classification with deep con-volutional neural networks[J]. Advances in Neural Information Processing Systems 25, 2012:1106-1114.
  • 6DH Hubel,TN Wiesel. Receptive fields, binocular interaction, and functional architecture in the cat's visual cortex[J]. Journal of Physi- ology(London), 1962,160 : 106-154.
  • 7K. Fukushima, Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in po- sition[J]. Biological Cybernetics, 1980, 36:193-202.
  • 8Y. I~ Cun, L. Bottou, Y. Bengio, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86( 11 ) :2278-2324.
  • 9Y. LeCun, B. Boser, J. S. Denker, et al. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989,1(4): 541-551.
  • 10Yoshua Bengio, Learning Deep Architectures for AI[J]. Machine Learning, 2009,2( 1 ) : 1-127.

共引文献1361

同被引文献263

引证文献38

二级引证文献267

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部