期刊文献+

基于卷积神经网络的图像识别算法设计与实现 被引量:47

Design and Implementation of Image Recognition Algorithm Based on Convolutional Neural Networks
在线阅读 下载PDF
导出
摘要 卷积神经网络在图像识别领域取得很好的效果,但其网络结构对图像识别的效果和效率有较大的影响,为改善识别性能,通过重复使用较小卷积核,设计并实现一种新的卷积神经网络结构,有效地减少训练参数的数量,并能够提高识别的准确率。与图像识别领域当前具有世界先进水平的ILSVRC挑战赛中取得较好成绩的算法对比实验,验证这种结构的有效性。 Convolutional neural networks has achieved a great success in image recognition. The structure of the network has a great impact on the performance and accuracy in image recognition. To improve the performance of this algorithm, designs and implements a new architecture of the convolutional neural network by using convolutional layers with small kernel size repeatedly, which will reduce the number of training parameters effectively and increase the recognition accuracy. Compared with the state-of-art results in ILSVRC, experiments demonstrate the effectiveness of the new network architecture.
作者 王振 高茂庭
出处 《现代计算机(中旬刊)》 2015年第7期61-66,共6页 Modern Computer
基金 国家自然科学基金项目(No.61202022) 上海海事大学科研项目
关键词 卷积神经网络 深度学习 图像识别 机器学习 神经网络 Convolutional Neural Networks Deep Learning Image Recognition Machine Learning Neural Network
  • 相关文献

参考文献15

  • 1Alex Krizhevsky, Ilya Sutskever, Geoff Hinton. Imagenet classification with deep con-volutional neural networks[J]. Advances in Neural Information Processing Systems 25, 2012:1106-1114.
  • 2DH Hubel,TN Wiesel. Receptive fields, binocular interaction, and functional architecture in the cat's visual cortex[J]. Journal of Physi- ology(London), 1962,160 : 106-154.
  • 3K. Fukushima, Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in po- sition[J]. Biological Cybernetics, 1980, 36:193-202.
  • 4Y. I~ Cun, L. Bottou, Y. Bengio, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86( 11 ) :2278-2324.
  • 5Y. LeCun, B. Boser, J. S. Denker, et al. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989,1(4): 541-551.
  • 6Yoshua Bengio, Learning Deep Architectures for AI[J]. Machine Learning, 2009,2( 1 ) : 1-127.
  • 7Glorot X, Bordes A,Bengio, Y. Deep sparse rectifier networks[C]. Proceedings of the 14th International Conference on Artificial Intelli- gence and Statistics. JMLR W&CP Volume, 2011,15:315-323.
  • 8Yoshua Bengio, Aaron Courville, and Pascal Vincent, representation learning: A review and new rerspectives[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2013, Issue No.08 - Aug. (2013 vol.35):1798-1828.
  • 9IA Yang-qing, Shelhamer Evan, Donahue Jeff, et al. caffe: convolutional architecture for Fast feature embedding[EB/OL]. 2014, arXiv preprint arXiv: 1408.5093.
  • 10Know your meme: We need to go deeper [EB/OL] [2014-12-01]. http://knowyourmeme.com/memes/we-need-to-go-deeper.

同被引文献268

引证文献47

二级引证文献360

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部