期刊文献+

“青岛大虾事件”微博语篇的批评性话语分析 被引量:1

A critical discourse analysis of weibo discourse on “Qingdao's Prawn Scandal”
在线阅读 下载PDF
导出
摘要 借助语料库检索工具与舆情图悦软件,以"青岛大虾事件"微博语篇为例,从批评性话语分析的视角研究网络语篇特点以及暴力语言背后的意识形态。分析结果显示:微博网民的语言呈现出碎片化与段子化等特点;网民负面情绪所针对的客体主要为事件当事方,此外,对社会的担忧以及对政府职能部门的质疑、反对与愤怒等情绪也较为突出;网民通过使用隐喻、文本互文、表情图片与网络流行语,将其情感直接传递给其他网民,从而影响舆论场的整体态度;"标签化"与"污名化"现象在舆论场中较为普遍,网民在类似热点事件讨论中,习惯于以狂欢方式给事件当事群体或个人贴上标签。这种不顾事实给事情定性的标签化现象,呈现出网络暴力倾向。 From the perspective of critical discourse analysis, assisted by corpus linguistics software and opinion visualization software, the present study attempts to reveal the characteristics and ideology in Wei- bo discourse on Qingdao's Prawn Scandal. The results suggest that: (1) the majority of Weibo users are inclined to complain about social problems in fragmented language to express their anger; (2) the negative emotion in Weibo mainly point to the parties involved,among which the emotions of social anxiety,doubt, dissention and fury at government functional departments are more obvious; (3)by the usage of metaphors, intertextuality,emotion characters and network catchwords,netizens transmit their emotions to others in a direct way and therefore influence the general attitude of opinion field; (4)stigmatization and labeling phe- nomena are common in opinion field and netizens tend to label the regions,groups and parties involved in a carnival way when they discuss social hot issues,which shows a tendency of cyber violence.
作者 刘文宇 李珂
出处 《辽宁师范大学学报(社会科学版)》 2017年第3期98-104,共7页 Journal of Liaoning Normal University(Social Science Edition)
基金 国家社会科学基金一般项目"基于批评话语分析的网络语言暴力研究"(15BYY057)
关键词 批评性话语分析 隐喻 意识形态 “青岛大虾事件” 污名化 critical discourse analysis metaphors ideology "Qingdao' s Prawn Scandal" stigmatiza-tion
  • 相关文献

参考文献2

二级参考文献21

  • 1王伟,靖继鹏.公共危机信息传播的社会网络机制研究[J].情报科学,2007,25(7):979-982. 被引量:28
  • 2Duncan J.Watts.Six Degrees:the Science of a Connected Age[M].New York:W.W.Norton &Company,2003.
  • 3袁毅.SNS中信息传播特点研究分析.图书馆论坛,2009,(12):22-36.
  • 4Cytoscape[EB]. http://www.cytoscape.org,2011-10-03.
  • 5Bollen, J., Pepe, A., & Mao, H., " Modeling public mood and emotion: Twitter sentiment and socio-economic phenomena," Paper presented in proceedings of ICWSM, 2011,July, Barcelona, Spain.
  • 6Berger, J. & Milkman, K., " What makes online content viral?," Journal of Marketing Research, vol. 49, no. 2, 2012, pp. 192 -205.
  • 7陈爽,周明洁,张建新.《微博信息的情绪效价与唤起程度对信息传播的影响》,《第十五届全国心理学学术会议论文摘要集》2012年.
  • 8Thelwall, M. , Buckley, K. , & Pahoglou, G. , "Sentiment in Twitter Events," Journal of the American Society for Information Science and Technology, vol. 62, no. 2, 2011, pp. 406 - 418.
  • 9Dang-Xuan, L., Stieglitz, S., Wladarsch, J., & Neuberger, influentials and the role of sentiment in political communication periods," Information, Communication, and Society, vol. 16, no. , " An investigation of Twitter during election 2013, pp. 795 - 825.
  • 10Bae, Y. , & Lee, H. , "Sentiment analysis of Twitter audiences: Measuring the positive or negative influence of popular twitters," Journal of the American Society for information Science and Technology, vol. 63, no. 12, 2012, pp. 2521-2535.

共引文献146

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部