期刊文献+

基于卷积受限玻尔兹曼机的医学图像分类新方法 被引量:7

A new medical image classification method based on convolution restricted Boltzmann machine
在线阅读 下载PDF
导出
摘要 利用数据挖掘方法对医学图像做分析是目前研究的热点之一,常用的挖掘方法首先需要从医学图像中提取特征,然后进行分类分析。目前,应用最多的是提取图像的统计特征,这种方法对所提取的特征有很强的依赖性。采用一种深度学习的新方法——卷积受限玻尔兹曼机模型,并且采用改进的快速持续对比散度算法对模型进行训练。该方法直接从乳腺X光图像中自主学习特征并利用学习到的特征对图像进行分类。实验结果显示,新方法对医学图像的分类精度相对于已有方法有明显的提升。 Data mining methods are widely used to analyze medical images in current research. Com- monly used mining methods first need to extract features from medical images and then do classification analysis. At present, the statistical features extracted from images are mostly applied, however, it has a strong dependence on the extracted features. We propose a new classification method based on convolution restricted Boltzmann machine (CRBM), which can train the CRBM model by the fast continuous contrastive divergence algorithm. The method can directly and automatically learn features from the mammography image and use these features to do classificature. Experimental results show that the proposed method can improve the classification accuracy of medical images.
出处 《计算机工程与科学》 CSCD 北大核心 2017年第2期323-329,共7页 Computer Engineering & Science
基金 国家自然科学基金(61163036 61163039) 2012年度甘肃省高校基本科研业务费专项资金(1201-16) 西北师范大学第三期知识与创新工程科研骨干项目(nwnu-kjcxgc-03-67)
关键词 医学图像分类 卷积受限玻尔兹曼机 快速持续对比散度 分类精度 medical image classification convolution restricted Boltzmann machine fast continuous contrastive divergence accuracy of classification
  • 相关文献

参考文献4

二级参考文献92

  • 1CASTLEMANKR.数字图像处理[M].北京:电子工业出版社,2002..
  • 2MarkoffJ. How many computers to identify a cat?[NJ The New York Times, 2012-06-25.
  • 3MarkoffJ. Scientists see promise in deep-learning programs[NJ. The New York Times, 2012-11-23.
  • 4李彦宏.2012百度年会主题报告:相信技术的力量[R].北京:百度,2013.
  • 510 Breakthrough Technologies 2013[N]. MIT Technology Review, 2013-04-23.
  • 6Rumelhart D, Hinton G, Williams R. Learning representations by back-propagating errors[J]. Nature. 1986, 323(6088): 533-536.
  • 7Hinton G, Salakhutdinov R. Reducing the dimensionality of data with neural networks[J]. Science. 2006, 313(504). Doi: 10. 1l26/science. 1127647.
  • 8Dahl G. Yu Dong, Deng u, et a1. Context-dependent pre?trained deep neural networks for large vocabulary speech recognition[J]. IEEE Trans on Audio, Speech, and Language Processing. 2012, 20 (1): 30-42.
  • 9Jaitly N. Nguyen P, Nguyen A, et a1. Application of pretrained deep neural networks to large vocabulary speech recognition[CJ //Proc of Interspeech , Grenoble, France: International Speech Communication Association, 2012.
  • 10LeCun y, Boser B, DenkerJ S. et a1. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989, I: 541-551.

共引文献696

同被引文献63

引证文献7

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部