期刊文献+

基于关联规则的医学图像分类算法 被引量:1

Efficient medical image classification algorithm based on association rules
在线阅读 下载PDF
导出
摘要 针对医学图像数据的特殊性,提出了一种适合挖掘大量医学图像数据的关联分类算法。该算法以频繁模式树为基础,通过引入双支持度,排除一部分对分类无意义且存在干扰的项,以提高分类正确率。实验结果表明,当用于医学图像分类时,该算法可以取得同样的基于关联规则的分类算法CMAR更高的执行效率及更好的分类效果。 According to the characteristic ofmedical image dataset, new associative classification algorithm is introduced which suitable for mining huge medical image dataset. The new algorithm is based on FP-growth, which introduce double-support to eliminate items which interfere with classification. The experiments show that when used for medical image classification the method has better efficiency and classification accuracy than other reported associative classification methods.
出处 《计算机工程与设计》 CSCD 北大核心 2008年第12期3234-3236,共3页 Computer Engineering and Design
基金 国家自然科学基金项目(60572112)
关键词 数据挖掘 关联规则 分类 频繁模式树 医学图像 data mining associative rules classification FP-growth medical image
  • 相关文献

参考文献7

  • 1Han J,Kamber M.Data mining: Concepts and techniques[M].Beijing:Beijing Higher Education Press,2001 : 10-20.
  • 2Li Wenmin,Han J,Jian ECMAR:Accurate and efficient classification based on multiple class-association rules [C]. America. Proceedings of IEEE International Conference on Data Mining Can Jose,2001:369-376.
  • 3Fadi Thabtah.Challenges and interesting research directions in associative classification[C].America:Proceedings of IEEE International Conference on Data Mining,2006:879-886.
  • 4Wang TJ.Fast associated classification algorithm of medical images based on constraints[C].Wuhan:Huazhong University of Science Technology(Nature Science Edition),2005:73-78.
  • 5徐文拴,辛运帏.一种新的基于FP-Tree的关联规则增量式更新算法[J].计算机工程与设计,2006,27(18):3430-3432. 被引量:5
  • 6王元珍,钱铁云,冯小年.基于关联规则挖掘的中文文本自动分类[J].小型微型计算机系统,2005,26(8):1380-1383. 被引量:13
  • 7王立军.基于关联规则的医学图像分类[D].镇江:江苏大学,2005:45-50.

二级参考文献19

  • 1钟勇发,吕红兵.基于FP-growth的关联规则增量更新算法[J].计算机工程与应用,2004,40(26):174-175. 被引量:5
  • 2Agrawal R, Srikant R. Fast algorithm for mining association rules in large databases [C]. In: Research Report RJ9839.IBM Almaden Research Center. San Jose. Ca, June 1994: 1-32.
  • 3Liu Bing. Integrating classification and association rule mining[J]. KDD-98, 1998.
  • 4Li Wen-rain, Han Jia-wei,Pei Jian. CMAR: Accurate and efficient classification based on multiple class-association rules[C]. ICDM2001:369-376.
  • 5Osmar R Zaiane, Maria-Luiza Antonie. Classifying text document by association terms with text categories [C]. The Thirteenth Australssian Database Conference (ADC2002), Melbourne, Australia : 215-222.
  • 6范明 等.数据挖掘概念与技术[M].北京:机械工业出版社,2001..
  • 7Han J,Pei J,Yin Y.Mining frequent pattern without candidate generation[C].Dallas,TX:Proc 2000 ACM-SIGMOD Int Conf Management of Data (SIGMOD'00),2000.1-12.
  • 8Cheung D W.Maintenance of discovered association rules in large databases:An incremental updating technique[C].Proceedings of the 12th International Conference on Data Engineering,1996.106-114.
  • 9冯玉才,冯剑琳.关联规则的增量式更新算法[J].软件学报,1998,9(4):301-306. 被引量:227
  • 10黄萱菁,吴立德,石崎洋之,徐国伟.独立于语种的文本分类方法[J].中文信息学报,2000,14(6):1-7. 被引量:52

共引文献16

同被引文献50

  • 1陈爱东,刘国华,费凡,周宇,万小妹,貟慧.满足均匀分布的不确定数据关联规则挖掘算法[J].计算机研究与发展,2013,50(S1):186-195. 被引量:18
  • 2宋余庆,朱玉全,孙志挥,杨鹤标.一种基于频繁模式树的约束最大频繁项目集挖掘及其更新算法[J].计算机研究与发展,2005,42(5):777-783. 被引量:21
  • 3马建庆,钟亦平,张世永.基于兴趣度的关联规则挖掘算法[J].计算机工程,2006,32(17):121-122. 被引量:20
  • 4刘学军,徐宏炳,董逸生,钱江波,王永利.基于滑动窗口的数据流闭合频繁模式的挖掘[J].计算机研究与发展,2006,43(10):1738-1743. 被引量:26
  • 5Agrawal R,Srikant R.Fast algorithms for mining association rules[C]//Proc of International Conference on Very Large Databases.1994:487-499.
  • 6Park J S,Chen M S,Yu P S.An effective hash-based algorithm for mining association rules[J].SIGMOD Record,1995,25(2):175-186.
  • 7Savasere A,Omiecinski E,Navathe S.An efficient algorithm for mi-ning association rules in large databases[C]//Proc of the 21st International Conference on Very Large Databases.1995.
  • 8Toivonen H.Sampling large databases for association rules[C]//Proc of the 22nd International Conference on Very Large Databases.1996:1-12.
  • 9Lin Junlin,Dunham,M H.Mining association rules:anti-skew algorithms[C]//Proc of the 14th International Conference on Data Engineering.1998:486-493.
  • 10Han Jiawei,Pei Jian,Yin Yiwen.Mining frequent patterns without candidate generation[C]//Proc of ACM SIGMOD International Conference on Management of Data.New York:ACM Press,2000:1-12.

引证文献1

二级引证文献159

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部