期刊文献+

General Improved KdV方程的三层加权平均线性差分格式 被引量:6

Three-level average linear difference scheme for the general improved KdV equation
在线阅读 下载PDF
导出
摘要 本文对广义Improved KdV方程的初边值问题进行了数值研究,提出了一个三层加权平均线性差分格式,分析了差分解的存在唯一性,证明了格式的二阶收敛性和稳定性.数值实验验证了差分格式的有效性. In this paper, a numerical method for an initial-boundary value problem of the general Improved KdV equation is considered. A three-level average linear-implicit finite difference scheme is proposed and the existence and uniqueness are discussed. It is shown that the finite difference scheme is of second-order convergence and unconditionally stable. Numerical experiments verify the theoretical results.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第1期12-18,共7页 Journal of Sichuan University(Natural Science Edition)
关键词 GIKdV方程 线性差分格式 收敛性 稳定性 GIKdV equation Linear difference scheme Convergence Stability
  • 相关文献

参考文献2

二级参考文献22

  • 1ABDULLOEV K O, BOGOLUBSKY I L, MAKHANKOV V G. One more example of inelastic soliton interaction[J]. Physics Letters A, 1976, 56(6) :427-428.
  • 2KORTEWEG D J, DE VRIE, S G. On the change of form of long waves advancing in a rectangular channel and on a new type of long stationary waves[J]. Philos Mag, 1885, 39(5) :422-443.
  • 3MORRISON P J, MEISS J D, CAREY J R. Scattering of RLW solitary waves[J]. Physica, 1984, 11(D) :324-336.
  • 4ZHANG F, PEREZ-GARCIA V M, VAZQUEZ L. Numerical simulation of nonlinear Schrodinger systems: a new conservative scheme[J]. Appl Math Comput, 1995, 71(2-3) :165-177.
  • 5LI S, VU-QUOC L. Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation[J]. SIAM Numer Anal, 1995, 32(6) :1839-1864.
  • 6ZHOU Y. Application of discrete functional analysis to the finite difference methods [ M ]. Beijing: International Academic Publishers, 1990.
  • 7ALI A H A, SOLIMAN A A, RASLAN K R. Soliton solution for nonlinear partial differential equations by cosine-function method[ J]. Physics Letters A, 2007, 368:299-304.
  • 8Rosenau P.A quasrcontinuous description of a non- linear transmission line[J].Physical Scripta,1986,34:827.
  • 9Rosenau P,Dynamics of dense discrete systems[J],Progress of Theoretical Physics,1988,79:1028.
  • 10Park M A.On the Rosenau equation[J].Applied Mathematics and Computation,1990,9(2):145.

共引文献8

同被引文献27

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部