期刊文献+

基于数据挖掘的智能电网在线故障诊断与分析 被引量:21

On-line fault diagnosis and analysis of smart power grid based on data mining
在线阅读 下载PDF
导出
摘要 基于智能电网故障在线诊断与分析的目的,本文采用基于关联规则挖掘改进的Apriori算法,分析了电网三态数据的特性,并利用关联规则建立测试数据库,用于故障诊断在线挖掘;对传统的Apriori算法进行改进,使其只在起始扫描数据库一次,用以获取当前所有项集的支持度计数,解决了原算法多次扫描数据库的弊端,明显提高了在线挖掘效率。工程应用测试结果表明,该算法可有效提高在线故障诊断的实用化水平,具有很好的工程应用价值。 For the purpose of on-line fault diagnosis and analysis for smart power grids, this paper designed the improved Apriori algorithm based on united rules mining. Through analyzing the features of power grid three state data, test database which would be used for on-line fault diagnosis was found by using united rules. The traditional Apriori algorithm was improved to scan the database initially, in order to observe the frequency counting of all present itemsets, which solved the shortage of scanning the database frequently, and increased the efficiency on on-line mining. The results of engineering application tests indicated that the algorithm proposed in this paper could enhance the practical level of on-line fault diagnosis, which had good proiect application benefit.
出处 《电子设计工程》 2017年第1期136-139,共4页 Electronic Design Engineering
关键词 智能电网 故障信息 联合规则挖掘 在线故障诊断 smart power grid fault information united rules mining on-line fault diagnosis
  • 相关文献

参考文献14

二级参考文献133

共引文献488

同被引文献251

引证文献21

二级引证文献158

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部