期刊文献+

具有非强占型优先权顾客的M_1^(X_1),M_2^(X_2)/G_1,G_2/1排队系统的适定性

Well-Posedness of the M_1^(X_1),M_2^(X_2)/G_1,G_2/1 Queueing System with Non-Preemptive Priority Customers
原文传递
导出
摘要 运用Hille-Yosida定理,Phillips定理与Fattorini定理证明具有非强占型优先权顾客的M_1^(X_1),M_2^(X_2)/G_1,G_2/1排队系统存在唯一的、非负的、满足概率性质的时间依赖解. By using the HiUe-Yosida theorem, the Phillips theorem and Fattorini theorem we prove that the M1X1,M2X2/G1,G2/1queueing system with non-preemptive priority cus-tomers has a unique positive time-dependent solution which satisfies probability condition.
出处 《数学的实践与认识》 北大核心 2016年第23期180-200,共21页 Mathematics in Practice and Theory
基金 国家自然科学数学天元基金(11526175) 国家自然科学基金(11371304) 新疆大学博士启动基金(BS130104)
关键词 非强占型 优先权 M1X1 M2X2/G1 G2/1 排队系统 CO-半群 Dispersive算子 Non-preemptive priority the M1X1,M2X2/G1,G2/1 queueing system Co- semigroup dispersive operator
  • 相关文献

参考文献1

二级参考文献6

  • 1Gautam Choudhury, Lotfi Tadj, Kandarpa Deka. A batch arrival retrial queueing system with two phases of service and service interruption [J]. Computers & Mathematics with Applications, 2010, 59: 437-450.
  • 2Geni Gupur, Li Xue-zhi, Zhu Guang-tian. Functional Analysis Method in Queueing Theory [M]. Herdfortshire: Research Information Ltd., 2001.
  • 3Geni Gupur. Semigroup method for M/G/1 retrial queue with general retrial times [J]. International Journal of Pure and Applied Mathematics, 2005, 18: 405-429.
  • 4Robert A Adamds. Sobolev Spaces [M]. New York: Academic Press, 1975.
  • 5Fattorini H O. The Cauchy Problem [M]. Massachusetts: Addison-Wesley, 1983.
  • 6Geni Gupur. Analysis of the M/G/1 retrial queueing model with server breakdowns [J]. Journal of Pseudo-Differential Operators and Applications, 2010, 1: 313-340.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部