摘要
首先给出了只有一类不耐烦顾客的M/M/m排队模型,其中顾客到达与服务都服从相互独立的泊松分布,顾客的耐心等待期限截止到服务开始前,并服从指数分布,最终得到了顾客丢失率及稳态下的队长分布。利用此结论研究了具有多个服务台,两类到达顾客的M/M/m/2k-m排队系统,其中第一类顾客对于第二类顾客具有强占型优先权,顾客的耐心等待时间即等待期限仍服从指数分布,两类顾客具有各自的等待轨道。采用矩阵分析的方法给出了两类顾客各自的稳态分布,并作了相应的性能分析。
The model of the M/M/m queue systems where customers have strict deadlines until the beginning of their service is given. There are queues with the state-independent Poisson arrival customer process, exponential serVice times, multiple servers, FCFS service discipline and exponential customer impatience. Using the obtained loss rate the M/M/2k-m queue systems where there are two-class customers are studied. By the matrix analysis the queue length distributions in the stationary state are obtained and analyzed.
出处
《成都信息工程学院学报》
2006年第6期903-909,共7页
Journal of Chengdu University of Information Technology
基金
国家自然科学基金资助项目(70571030)
关键词
不耐烦顾客
强占型优先权
稳态分布
丢失率
矩阵分析
impatience customer
preemptive priority
steady state distribution
loss rate
matrix analysis