期刊文献+

基于数据挖掘的网络异常检测方法的研究 被引量:2

Research on Network Anomaly Detection Method Based on Data Mining
原文传递
导出
摘要 为提高K-means聚类算法在异常检测中的效果,以聚类分析为主线,针对传统的K_means聚类算法在初始聚类中心点选择随机性和K值预先设定的问题,提出了一种改进的K_means聚类分析算法,算法引入密度参数和距离理论。依据密度理论和最大距离找出k个初始化中心点。并对算法进行仿真实验,实验证明,新的算法具有良好的效果。 In order to improve K-means clustering algorithm effect in Anomaly Detection,use Cluster analysis to the main line,for K means clustering algorithms the problems in the initial cluster centers select random and the preset value K. an algorithm to calculate the number of the Cluster Center was given.Proposed an improved K-means Clustering Algorithm,we used Density parameter and the theoretical of distance in this algorithm. according to the theoretical density and maximum distances to find k initialization center. For This Algorithm ,we set to test, The results show the algorithm have a higher detection rate and a lower false alarm rate.
出处 《电子技术(上海)》 2016年第11期30-32,共3页 Electronic Technology
  • 相关文献

参考文献3

二级参考文献17

  • 1张惟皎,刘春煌,李芳玉.聚类质量的评价方法[J].计算机工程,2005,31(20):10-12. 被引量:61
  • 2LI Han,ZHANG Nan,BAO Lihui.Using an Improved Clustering Method to Detect Anomaly Activities[J].Wuhan University Journal of Natural Sciences,2006,11(6):1814-1818. 被引量:3
  • 3Lee W K,Stolfo S J,Mok K W. A data mining framework for building intrusion detection models[ C]//Proceeding of the IEEE Symposium on Security and Privacy. California, IEEE Computer Society Press, 1999:120- 132.
  • 4Erbaeher R F, Walker K L, Frincke D A. Intrusion and misuse detection in large-scale systems[J]. IEEE Computer Graphics and Applications, 2002,22 (1) : 38 - 47.
  • 5Richard J Hathaway,James C Bezdek. Extending fuzzy and probability clustering to very large data sets[ J ]. Computational Statistics & Data Analysis,2006,51(1):215-234.
  • 6Hansen P, Mladenovic N. J- means: a new local search heuristic for minimum sum - of - squares clustering [ J ]. Pattern Recognition,2002,34(2) :405 - 413.
  • 7University of California. KDD CUP 1999 dataset [ EB/ OL]. (1999 - 10 - 28) [2010 - 1 - 20]. http://kdd, ies. uci. edu/databases/kddcup99/kddcup99, html.
  • 8HAN Jia-wei, MICHELINE K. Data mining concepts and techniques [ M]. 2nd ed. Singapore:Elsevier, 2006 : 383-419.
  • 9周涓 熊忠阳 张玉芳.初始中心优化的K-means聚类算法.计算机科学,2006,26(6):1425-1426.
  • 10ESTER M, KRIEGEL H P, SANDER J . A density-based algorithm for discovering clusters in large spatial database with noise[ C ]//Proc of the 2nd International Conference on Knowledge Discovery and Data Mining(KDD) . 1996:4-10.

共引文献215

同被引文献7

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部