期刊文献+

Using an Improved Clustering Method to Detect Anomaly Activities 被引量:3

Using an Improved Clustering Method to Detect Anomaly Activities
在线阅读 下载PDF
导出
摘要 In this paper, an improved k-means based clustering method (IKCM) is proposed. By refining the initial cluster centers and adjusting the number of clusters by splitting and merging procedures, it can avoid the algorithm resulting in the situation of locally optimal solution and reduce the number of clusters dependency. The IKCM has been implemented and tested. We perform experiments on KDD-99 data set. The comparison experiments with H-means+also have been conducted. The results obtained in this study are very encouraging. In this paper, an improved k-means based clustering method (IKCM) is proposed. By refining the initial cluster centers and adjusting the number of clusters by splitting and merging procedures, it can avoid the algorithm resulting in the situation of locally optimal solution and reduce the number of clusters dependency. The IKCM has been implemented and tested. We perform experiments on KDD-99 data set. The comparison experiments with H-means+also have been conducted. The results obtained in this study are very encouraging.
出处 《Wuhan University Journal of Natural Sciences》 CAS 2006年第6期1814-1818,共5页 武汉大学学报(自然科学英文版)
基金 Supported by the Beijing Municipal Commission ofEducation Science and Technology Project (KM200511232004)
关键词 clustering analysis anomaly detection intrusion detection K-MEANS clustering analysis anomaly detection intrusion detection k-means
  • 相关文献

参考文献10

  • 1Xian Ji-qing,Lang Feng-hua,Tang Xian-lun.A novel Intrusion Detection Method based on clonal selection clustering algorithm[].the th International Conference on Machine Learning and Cybernetics.2005
  • 2White G B,Fisch E A,Pooch U W.Cooperating Security Managers: A Peer Based Intrusion Detection System[].IEEE Network.1996
  • 3Dasgupta D,Gonzalez F.An immunity-based technique to characterize intrusions in computer networks[].IEEE Transactions on Evolutionary Computation.2002
  • 4Y Guan,,AA Ghorbani,,N Belacel.Y-means:a clustering method for intrusion detection[].Proceedings of Canadian Conference on Electrical and Computer Engineering.2003
  • 5Portnoy,L,Eskin,E,Stolfo,S J. Intrusion Detection with Unlabeled Data Using Clustering[C]//Proceedings of ACM CSS Workshop on Data Mining Applied to Security (DMSA-2001) . 2001
  • 6Bandyopadhyay S,Maulik U.Genetic Clustering for Automatic Evolution of Clusters and Application to Image Classification[].Pattern Recognition.2002
  • 7Caberera J,Ravichandran B,Mehra R K.Statistical Model- ing for Network Intrusion Detection [ DB/OL]. http://IEEExplore. IEEE. org/xplore/login. gsp? url=/iel5/7034/18941/00876573.pdf? tp=&arnumber= 876573&isnumber=18941 . 2006
  • 8Cho Sung-bae.Incorporating Soft Computing Techniques into AProbabilistic intrusion Detection System[].IEEEtrans- actions on System Manand Cybernetics ( Part C).2004
  • 9Information and Computer Science University of California.Irvine KDD CUP99 Data Set[].ht- tp://kddicsuciedu/databases/kddcup/kddcupht- ml.2006
  • 10Kruegel C,Vigna G,William Robertson.A Multi-model Approachto the Detection of Web-Based Attacks[].Com- puter Networks.2005

同被引文献20

  • 1卿斯汉,蒋建春,马恒太,文伟平,刘雪飞.入侵检测技术研究综述[J].通信学报,2004,25(7):19-29. 被引量:235
  • 2蒋盛益,李庆华.一种增强的k-means聚类算法[J].计算机工程与科学,2006,28(11):56-59. 被引量:15
  • 3Lee W K,Stolfo S J,Mok K W. A data mining framework for building intrusion detection models[ C]//Proceeding of the IEEE Symposium on Security and Privacy. California, IEEE Computer Society Press, 1999:120- 132.
  • 4Erbaeher R F, Walker K L, Frincke D A. Intrusion and misuse detection in large-scale systems[J]. IEEE Computer Graphics and Applications, 2002,22 (1) : 38 - 47.
  • 5Richard J Hathaway,James C Bezdek. Extending fuzzy and probability clustering to very large data sets[ J ]. Computational Statistics & Data Analysis,2006,51(1):215-234.
  • 6Hansen P, Mladenovic N. J- means: a new local search heuristic for minimum sum - of - squares clustering [ J ]. Pattern Recognition,2002,34(2) :405 - 413.
  • 7University of California. KDD CUP 1999 dataset [ EB/ OL]. (1999 - 10 - 28) [2010 - 1 - 20]. http://kdd, ies. uci. edu/databases/kddcup99/kddcup99, html.
  • 8Lee W K, Stolfo S J, Mok K W. A data mining framework for building intrusion detection models [ C ] //Proceeding of the IEEE Symposium on Security and Privacy. California:IEEE Computer Socidy Press, 1999 : 120 - 132.
  • 9Erbacher R F, Walker K L, Frincke D A. Intrusion and misuse detection in large -scale systems[ J]. IEEE Computer Graphics and Applications,2002, 22(1) :38 -47.
  • 10Richard J Hathaway, James C Bezdek. Extending fuzzy and probability clustering to very large data sets [ J ]. Computational Statistics & Data Analysis,2006,51 ( 1 ) :215 -234.

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部