期刊文献+

稠密RFID标签环境下捕获感知贝叶斯标签估计 被引量:5

Capture-Aware Bayesian Tag Estimation for Dense RFID Tags Environment
在线阅读 下载PDF
导出
摘要 动态帧时隙Aloha算法是一种常用的被动式射频识别(radio frequency identification,RFID)标签防冲突算法.在该算法中,帧长需要动态设置以保证较高的识别效率.通常,帧长的设置与标签数和捕获效应的发生概率相关.传统的估计算法虽然可以估计出标签数和捕获效应的发生概率,但是在稠密RFID标签环境下,标签数可能远大于初始帧长,其估计误差会显著增加.为了解决传统算法无法应用于稠密RFID标签环境的问题,提出了捕获感知贝叶斯标签估计,并且给出了非等长时隙下最优帧长的设置方法.从实验结果来看,提出算法的估计误差在稠密RFID标签环境下显著低于传统算法,而且根据估计结果设置帧长所得到的识别效率也高于传统算法. Dynamic framed slotted Aloha algorithm is one kind of commonly used passive radio frequency identification(RFID)tag anti-collision algorithms.In the algorithm,the frame length requires dynamical set to ensure high identification efficiency.Generally,the settings of the frame length are associated with the number of tags and the probability of capture effect.Traditional estimation algorithms can estimate the number of tags and the probability of capture effect,but the number of tags is greater than an initial frame length when it is in dense RFID tags environment,and the estimation errors will increase significantly.In order to solve the problem that the conventional algorithms can not be applied to dense RFID tags environment,capture-aware Bayesian tag estimation is proposed in the paper,and the settings of optimal frame length with non-isometric slots are given.From the experimental results,the proposed algorithms have significantly lower estimation errors than traditional algorithms in dense RFID tags environment.And the identification efficiency got by setting the frame length according to the estimation results is also higher than that of traditional algorithms.
出处 《计算机研究与发展》 EI CSCD 北大核心 2016年第6期1325-1331,共7页 Journal of Computer Research and Development
基金 国家自然科学基金项目(61262091) 云南省第17批中青年学术和技术带头人资助项目(2014HB019) 云南省教育厅科学基金重大项目(ZD2011009) 云南省教育厅科学基金重点项目(2014Z093)~~
关键词 ALOHA算法 射频识别 捕获感知 稠密 贝叶斯估计 Aloha algorithm radio frequency identification(RFID) capture-aware dense Bayesian Estimation
  • 相关文献

参考文献15

  • 1Welbourne E, Battle L, Cole G, et al. Building the Internet of things using RFID: The RFID ecosystem experience [J]. 1EEE Internet Computing, 2009, 13(3)= 48-55.
  • 2Finkenzeller K. RFID Handbook: RadicFrequency Identification Fundamentals and Applications [M]. 2nd ed. Hoboken, NJ= John Wiley and Sons, 2003.
  • 3Shin D H, Sun P L, Yen D C, et al. Taxonomy and survey of RFID anti-collision protocols [J]. Computer Communications, 2006, 29(11): 2150-2166.
  • 4Lai Y, Hsiao L. General binary tree protocol for coping with the capture effect in RFID tag identification [J]. IEEE Communications Letters, 2010, 14(3): 208-210.
  • 5Maguire Y, Pappu R. An optimal Q-algorithm for the IS() 18000-6C RFID protocol [J]. IEEE Trans on Automation Science and Engineering, 2009, 6 (1) .- 16-24.
  • 6Li B, Wang J Y. Efficient anti-collision algorithm utilizing the capture effect for ISO18000 6C RFID protocol [J]. IEEE Communications Letters, 2011, 15(3): 352-354.
  • 7Yang X, Wu H F, Zeng Y, et al. Capture-aware estimation for the number of RFID tags with lower complexity [J]. IEEE Communications Letters, 2013, 17(10) = 1873-1876.
  • 8Schoute F C. Dynamic frame length Aloha [J]. IEEE Trans on Communication, 1983, 31(4): 565-568.
  • 9Vogt H. Efficient object identification with passive RFID tags [C] //Proc of Int Conf on Pervasive Computing. Berlin: Springer, 2002:98-113.
  • 10Lee S R, Joo S D, Lee C W. An enhanced dynamic framed ALOHA algorithm for RFID tag identification [C] //Proc of Int Conf Mobile and Ubiquitous Systems Networking and Services. Piscataway, NJ: IEEE, 2005:1-5.

二级参考文献24

  • 1Finkenzeller K. RFID Handbook: Radio-frequency Identification Fundamentals and Applications (Second Edition). England: John Wiley and Sons, 2003. 1-10.
  • 2Shin D H, Sun P L, Yen D C, Huang S M. Taxonomy and survey of RFID anti-collision protocols. Computer Communications, 2006, 29(11): 2150-2166.
  • 3Capetanakis J I. Tree algorithms for packet broadcast channels. IEEE Transactions on Information Theory, 1979, 25(5): 505--515.
  • 4Hush D R, Wood C. Analysis of tree algorithm for RFID arbitration. In: Proceedings of IEEE International Symposium on Information Theory. Cambridge, USA: IEEE, 1998. 107.
  • 5Law C, Lee K, Siu K S. Efficient memoryless protocol for tag identification. In: Proceedings of the 4th ACM International workshop on discrete algorithms and methods for mobile computing and communications. Boston, USA: ACM, 2000. 75-84.
  • 6Myung J, Lee W, Srivastava J. Adaptive binary splitting for efficient RFID tag anti-collision. IEEE Communications Letters, 2006, 10(3): 144-146.
  • 7Myung J, Lee W, Shih T K. An adaptive memoryless protocol for RFID tag collision arbitration. IEEE Transactions on Multimedia, 2006, 8(5): 1096-1101.
  • 8Myung J, Lee W, Srivastava J, Shih T K. Tag-splitting: adaptive collision arbitration protocols for RFID tag identification. IEEE Transactions on Parallel and Distributed Systems, 2007, 18(6): 763-775.
  • 9Lai Y C, Lin C C. A pair-resolution blocking algorithm on adaptive binary splitting for RFID tag identification. IEEE Communication Letters, 2008, 12(6): 432-434.
  • 10Schoute F C. Dynamic frame length aloha. IEEE Transactions on Communications, 1983, 31(4): 565-568.

共引文献38

同被引文献64

引证文献5

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部