期刊文献+

阿法狗围棋系统的简要分析 被引量:36

A Simple Analysis of AlphaGo
在线阅读 下载PDF
导出
摘要 谷歌的围棋系统阿法狗(AlphaGo)在三月的比赛中以4:1的成绩击败了围棋世界冠军李世石,大大超过了许多人对计算机围棋程序何时能赶上人类职业高手的预期(约10~30年).本文在技术层面分析了阿法狗系统的组成部分,并基于它过去的公开对局预测了它可能的弱点. In March 2016, the AlphaGo system from Google Deep Mind beat the World Go Champion Lee Sedol 4:1 in a historic five-game match. This is a giant leap filling the gap between Go AI and top human professional players, which was once regarded to be filled in at least 10~30 years. In this paper, based on published results [Silver et al., 2016], i analyze the components of Alpha Go and predict its potential technical weakness based on the public games of Alpha Go.
作者 田渊栋
出处 《自动化学报》 EI CSCD 北大核心 2016年第5期671-675,共5页 Acta Automatica Sinica
关键词 深度学习 深度卷积神经网络 计算机围棋 强化学习 阿法狗 Deep learning deep convolutional neural network computer Go reinforcement learning AlphaGo
  • 相关文献

参考文献2

  • 1Silver D, Huang A, Maddison C J, Guez A, Sifre L, van den Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M, Dieleman S, Grewe D, Nham J, Kalchbren- ner N, Sutskever I, Lillicrap T, Leach M, Kavukcuoglu K, Graepel T, Hassabis D. Mastering the game of go with deep neural networks and tree search. Nature, 2016, 529(7587): 484-489.
  • 2Tian Y D, Zhu Y. Better computer go player with neural network and long-term prediction. In: International Confer- ence on Learning Representation (ICLR). San Juan, Puerto Rico, 2016.

同被引文献310

引证文献36

二级引证文献709

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部