期刊文献+

结合图像二次模糊范围和奇异值分解的无参考模糊图像质量评价 被引量:12

No-reference Quality Assessment for Blur Image Combined with Re-blur Range and Singular Value Decomposition
在线阅读 下载PDF
导出
摘要 针对图像的模糊失真问题,提出一种结合图像二次模糊范围和奇异值分解的无参考图像质量评价方法.首先根据图像二次模糊范围的差异性构建参考图像;然后对失真图像与参考图像进行奇异值分解,利用奇异值向量矩阵的相似度构建失真特性向量;再结合Log-Gabor滤波器组和高斯差分模型进行视觉显著度检测;最终以显著度加权的失真特性向量预测模糊图像的质量得分.大量实验结果表明,与同类算法相比,文中方法能够准确地评价模糊图像质量,与主观评价具有较高的一致性;在LIVE2图像库上,评价指标斯皮尔曼等级相关系数达到0.968 7,均方根误差为4.858 9;该方法无需对数据进行训练,具有较强的实用性和推广性. In this paper, a new no-reference image quality assessment (IQA) algorithm is proposed for blur images based on re-blur range and singular value decomposition. Firstly, a reference image is constructed based on the difference of re-blur range. Secondly, singular value decomposition is utilized on reference image and test image, and distortion feature vectors are extracted by computing the comparability of singular value matrixes. Thirdly, visual saliency is detected by Log-Gabor filters and the difference of Gaussian model. Finally, the image quality is assessed from distortion feature vectors weight by visual saliency. Ex-tensive experiments conducted on publicly IQA databases demonstrate that this method has higher correla-tion with human judgment and obtains a better evaluation index compared to other methods. The perform-ance indices of Spearman rank correlation coefficient and root mean square errors on the LIVE2 database are 0.968 7 and 4.858 9, respectively. It doesn’t need training to assess image quality and has wide value for ap-plication and popularization.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2016年第4期654-662,共9页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61405191) 吉林省青年科研基金项目(20150520102JH)
关键词 图像质量评价 二次模糊范围 奇异值分解 视觉显著度 模糊失真 image quality assessment re-blur range singular value decomposition visual saliency blur distortion
  • 相关文献

参考文献16

  • 1桑庆兵,梁狄林,吴小俊,李朝锋.基于支持向量回归的无参考模糊和噪声图像质量评价方法[J].光电子.激光,2014,25(3):595-601. 被引量:10
  • 2Manap R A, Shao L. Non-distorion-specific no-reference imagequality assessment: a survey[J]. Information Sciences, 2015, 301:141-160.
  • 3Liu L X, Dong H P, Huang H, et al, No-reference image qualityassessment in curvelet domain[J]. Signal Processing: ImageCommunication, 2014, 29: 494-505.
  • 4Mittal A, Moorthy A K, Bovik A C. No-reference image qualityassessment in the spatial domain[J]. IEEE Transactions on ImageProcessing, 2012, 21(12): 4695-4708.
  • 5Moorthy A K, Bovik A C. Blind image quality assessment:from natural scene statistics to perceptual quality[J]. Transactionson Image, 2011, 20(12): 3350-3364.
  • 6Ferzli R, Karam L J. A no-reference objective image sharpnessmetric based on the notion of just noticeable blur[J]. IEEETransactions on Image Processing, 2009, 18(4): 717-728.
  • 7Hassen R, Wang Z, Salama M M A. Image sharpness assessmentbased on local phase coherence[J]. IEEE Transactions onImage Processing, 2013, 22(7): 2798-2810.
  • 8Mittal A, Soundararajan R, Bovik A C. Making a “completelyblind” image quality analyzer[J]. IEEE Signal Processing Letters,2013, 20(3): 209-212.
  • 9Sheikh H R, Wang Z, Bovik A C, et al. LIVE image quality assessmentdatabase release 2[OL]. [2015-05-19]. http://live.ece.utexas.edu/research/quality.
  • 10宋修锐,吴志勇.图像通用目标的无监督检测[J].光学精密工程,2014,22(1):160-168. 被引量:8

二级参考文献32

  • 1玉振明,毛士艺,高飞.一种基于Gabor滤波的不同聚焦图像融合方法[J].航空学报,2005,26(2):219-223. 被引量:6
  • 2赵银娣,张良培,李平湘.一种方向Gabor滤波纹理分割算法[J].中国图象图形学报,2006,11(4):504-510. 被引量:26
  • 3X Li,M He,M Roux. Multifocus image fusion based on redundant wavelet transform[J].IET Image Processing,2010,(04):283-293.doi:10.1049/iet-ipr.2008.0259.
  • 4D Agrawal,J Singhai. Multifocus image fusion using modified pulse conpled neural network for improved image quality[J].IET Image Processing,2010,(06):443-451.
  • 5B Yang,S Li. Multifocus image fusion and restoration with sparse representation[J].IEEE Transactions on Instrumentation and Measurement,2010,(04):884-891.
  • 6Nannan Yu,Tianshuang Qiu,Feng Bi,Aiqi Wang. Image features extraction and fusion based on joint sparse representation[J].IEEE Journal of Selected Topics in Signal Processing,2011,(05):1074-1082.
  • 7FIELD D J. Relations between the.statistics of natural images and the response properties of cortical cells[J].Journalof the Optical Society of America A,1987,(12):2379-2394.
  • 8Pollen D A,Ronner S E. Visual cortical neurons as localized spatial frequncy filters[J].IEEE Transactions on Systems Man and Cybernetics,1983,(05):907-916.
  • 9LEIBE B,LEONARDIS A,SCHIELE B. Combined object categorization and segmentation with an implicit shape model[A].2004.17-32.
  • 10FELZENSZWALB P F,GIRSHICK R B,MCALLESTER R B D. Object detection with discriminatively trained part based models[J].IEEE Transactions on Pattern Analysis and Machine Intelligence TPAMI,2010.1627-1645.

共引文献20

同被引文献80

引证文献12

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部