期刊文献+

基于支持向量回归的无参考模糊和噪声图像质量评价方法 被引量:10

No-reference quality assessment algorithm for blur and noise images using support vector regression
原文传递
导出
摘要 基于支持向量回归(SVR)和图像奇异值分解,提出了一种新的无参考(NR,no-reference)模糊和噪声图像质量评价(IQA)方法。首先通过对待评价图像进行高斯低通滤波生成再模糊图像,然后分别对它们进行奇异值分解并计算奇异值的改变量,最后使用奇异值的改变量作为SVR的输入,训练预并测得到图像的质量评分。在3个公开的模糊和噪声数据库上的实验结果表明,新方法预测得分与主观得分有较好的一致性,获得了较好的评价指标;对于模糊失真类型和噪声失真类型,在LIVE2数据库上的性能评价指标斯皮尔曼等级相关系数(SROCC)分别达到0.961 3和0.965 9。 In this paper,we propose a new no-reference image quality assessment (IQA) algorithm ior blur and noise images using support vector regression (SVR) and singular value decomposition. The al- gorithm is composed of three steps. First, a re-blurred reference image is produced by using Gaussian low-pass filter for a test image. Then we do singular value decomposition to them and calculate the change of their singular values. Thirdly, we train the support vector regression by using change of singu- lar values and predict image quality score. Experimental results on three open blur and noise databases show that the proposed algorithm is more reasonable and stable than other methods. It has high correla- tion with human judgments and obtains a better evaluation index. So the proposed method is appropriate for no-reference blurred and noise image quality assessment. For the blur and noise distortion types,the performance indices of Spearman rank correlation coefficient (SROCC) on the LIVE2 datahase can reach 0. 9613 and 0. 9659 ,respeetively.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2014年第3期595-601,共7页 Journal of Optoelectronics·Laser
基金 国家自然科学基金(61170120 60973094) 国家自然科学基金(61103128) 江苏省自然科学基金(BK2011147)资助项目
关键词 图像质量评价(IQA) 无参考 奇异值分解 支持向量回归(SVR) 高斯低通滤波 image quality assessment (IQA) no-reference singular value decomposition support vector regression (SVR) Gaussian low-pass filtering
  • 相关文献

参考文献2

二级参考文献16

  • 1Crete F, Dolmiere T, Ladret P, et al. The blur effect : perception and estimation with a new no-reference perceptual blur metric [ C ]//Human Visual and Electrenic Imaging XII. San Jose, USA: Proceeding of SPIE ,2007:64920I.
  • 2Marziliano P, Dufaux F, Winkler S, et al. A no-reference perceptual blur metric [ C ]// Proceeding of IEEE International Conference on Image Processing. Genimedia SA, Switzerland: IEEE Computer Society,2002:57-60.
  • 3Wang Z,Sheik H R,Bovik A C. No-reference perceptual quality assessment of jpeg compressed images[ C ]//Proceeding of IEEE International Conference on Image Processing. New York, USA: IEEE Computer Society ,2002:447-480.
  • 4Pan F, Lin X, Rahardja S, et al. Using edge direction information for measuring blocking artifacts of images [ J ]. Multidimensional Systems and Signal Processing, 2007,18 (4) : 297 -308.
  • 5Charrier C, Lebrun G, Lezoray O. A machine learning-based color image quality metric [ C ]//Proceedings of Third European Conference on Color in Graphics. Leeds, UK: Imaging And Vision, 2006 : 251-256.
  • 6Babu R V, Perkis A. An hvs-base no-reference perceptual quality assessment of jpeg coded images using neural networks [ C ]// Proceedings of IEEE International Conference on Image Processing. Genoa, Italy: IEEE Computer Society ,2005:433-439.
  • 7Lu W, Zeng K, Tao D C, et al. No-reference image quality assessment in contourlet domain [ J]. Neurocomputing, 2010, 73(4-6) :784-794.
  • 8Moorthy K A, Bovik A C. A two-step framework for constructing blind image quality indices [ J ]. IEEE Signal Processing Letters, 2010,17(5) :513-516.
  • 9Schaaf A, Hateren J H. Modeling the power spectra of natural images : statistics and information [ J ]. Vision Research, 1996, 36(17) :2759-2770.
  • 10Sheikh H R, Wang Z. Live Image Quality Assessment Database [ EB/OL ] (2005) [ 2010-06-14 ]. http :// live. ece. utexas, edu/ research/quality.

共引文献33

同被引文献97

  • 1李奇,冯华君,徐之海.用于全数字对焦的点扩散函数性能分析与评价[J].浙江大学学报(工学版),2006,40(6):1093-1096. 被引量:6
  • 2苗立刚,轩波,彭思龙.显微镜的快速自动对焦算法[J].光电子.激光,2007,18(1):9-12. 被引量:12
  • 3苗启广,王宝树.基于改进的拉普拉斯金字塔变换的图像融合方法[J].光学学报,2007,27(9):1605-1610. 被引量:50
  • 4章毓晋.图像工程[M].北京:清华大学出版社,2012:77-79.
  • 5Steidley C,Bachnak R,Dannelly D S, et al. A multi-spec- tral imaging system for geo-spatial applications[J]. Jour- nal of Computational Methods in Sciences and Engineer- ing,2005, (5) :93-109.
  • 6Han Q L, Yang W. Semiconductor laser multi-spectral sen- sing and imaging[J]. Sensors, 2010, (10) : 544-583.
  • 7Yuval Garini,}an q "Young, Gerorge McNamara, et a:. Spe- ctral image: principles and applications[A]. Proc. of 2006 international Society for Analytical Cytology[C]. 2006, 735-747.
  • 8XIE Zhi-feng, Rynson W H,LAU Yan-gui,et al. A gradient- domain-based edge-preserving sharpen filter[J]. Original Artical, 2012,28( 1 ) : 1195-1207.
  • 9KennethROastleman.数字图像处理[M].北京:电子工业出版社,2002,171-208.
  • 10LI Hong-ning,XU Lin-li,FENG jie,et al. Sharpness evalu- ation function of wavelength related multi-spectral image [A]. IEEE 2013 2nd International Conference on Measure- ment, Information and control[C]. 2013,452-456.

引证文献10

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部