期刊文献+

基于ART和Yu范数的聚类方法在齿轮故障诊断中的应用 被引量:3

Application of clustering method based on ART and Yu norm to gears fault diagnosis
在线阅读 下载PDF
导出
摘要 针对传统聚类方法需预先指定类别个数而导致应用受限的问题,提出一种基于ART和Yu范数的聚类方法,可自适应地确定类别个数。通过对齿轮无标记故障样本的诊断分析对该方法进行验证。从多个角度提取反映故障信息的特征参数集,利用距离区分技术对其进行优选,并结合ART的机制和基于Yu范数的聚类技术,对齿轮故障类别进行诊断分析,并与Fuzzy ART方法的诊断结果进行比较。结果表明,该方法可以有效地对齿轮故障进行区分,且效果优于Fuzzy ART方法。 As the traditional clustering method needs to determine the number of classes in advance,a novel clustering method based on adaptive resonance theory (ART)and Yu norm that can self-adapt to determine the number of classes is proposed and validated by the diagnostic analysis of unlabeled faulty samples of gears.A feature parameter set that presents the fault-related information is extrac-ted from different symptom domains,and some optimal features are selected by the distance discrimi-nant technique.Having combined the merits of ART and Yu norm-based clustering method,the pro-posed clustering model is employed to diagnose the fault conditions of gears and found to be able to ef-fectively classify the faulty samples of gears,having better diagnosis performance than the fuzzy ART.
出处 《武汉科技大学学报》 CAS 北大核心 2016年第2期116-120,共5页 Journal of Wuhan University of Science and Technology
基金 国家自然科学基金资助项目(51405353)
关键词 齿轮 故障诊断 聚类方法 ART Yu范数 距离区分技术 gear fault diagnosis clustering method ART Yu norm distance discriminant technique
  • 相关文献

参考文献12

  • 1屈梁生,张海军.机械诊断中的几个基本问题[J].中国机械工程,2000,11(1):211-216. 被引量:75
  • 2王娜,杜海峰,庄健,王孙安.用于故障诊断的网络分割谱聚类方法[J].机械工程学报,2008,44(10):228-233. 被引量:6
  • 3PandyaD H,UpadhyayS H,HarshaSP.Faultdiagnosisofrollingelementbearing withintrinsicmodefunctionofacousticemissiondatausingAPFKNN[J].ExpertSystemswithApplications,2013,40(10):4137-4145.
  • 4YiakopoulosC T,GrylliasK C,AntoniadisIA.RollingelementbearingfaultdetectioninindustrialenvironmentsbasedonaK-meansclusteringapproach[J].Expert Systems with Applications,2011,38(3):2888-2911.
  • 5GrossbergS.Adaptiveresonancetheory:how abrainlearnstoconsciouslyattend,learn,andrecognizeachangingworld[J].NeuralNetworks,2013,37(1):1-47.
  • 6CarpenterG A,GrossbergS,RosenD B.FuzzyART:faststablelearningandcategorizationofanalogpatternsbyanadaptiveresonancesystem[J].NeuralNetworks,1991,4(6):759-771.
  • 7CarpenterGA,GrossbergS.ART2:self-organizationofstablecategoryrecognitioncodesforanaloginputpatterns[J].AppliedOptics,1987,26(23):4919-4930.
  • 8DagherI,GeorgiopoulosM,HeilemanGL,etal.Anorderingalgorithm forpatternpresentationinfuzzyARTMAPthattendstoimprovegeneralizationperformance[J].IEEETransactionsonNeuralNetworks,1999,10(4):768-778.
  • 9LuukkaP.SimilarityclassifierusingsimilaritymeasurederivedfromYu’snormsinclassificationofmedicaldatasets[J].Computersin BiologyandMedicine,2007,37(8):1133-1140.
  • 10LiangJN,YangS,Adam W.Invariantoptimalfeatureselection:adistancediscriminantandfeaturerankingbasedsolution [J].Pattern Recognition,2008,41(5):1429-1439.

二级参考文献20

  • 1CHIANG L H, RUSSELL E L, BRAATZ R D. Fault detection and diagnosis in industrial systems[M]. Great Britain: Springer-verlag London Limited, 2001.
  • 2MACQUEEN J B. Some methods for classification and analysis of multivariate observations[C]//The 5th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley. 1967: 281-297.
  • 3DUDA R O, HART P E, STORK D G. Pattern classification[M]. Beijing: China Machine Press, 2004.
  • 4SHI J, MALIK J. Normalized cuts and image segmentation[J]. IEEE Trans on PAMI, 2000, 22(8): 888-905.
  • 5VERMA D, MEILA M. A comparison of spectral clustering algorithms[R]. UW CSE, 2003-05-01.
  • 6DING C, REN X F, ZHA H, et al. A min-max cut for graph partitioning and data clustering[C]//IEEE Int. Conf. on Data Mining Advanced Materials and Processing, San Jose., USA: IEEE CS. 2001: 107-114.
  • 7ZHANG D Q, LIN C Y, CHANG S F, et al. Semantic video clustering across sources using bipartite spectral clustering[C]//2004 IEEE Int. Conf. on Multimedia and Expo(ICME), Taipei, China. 2004, 14: 849-856.
  • 8GOLUB G H, VANLOAN C F. Matrix computations [M]. Beijing: China Science and Technology Press, 2001.
  • 9ASUNCION A, NEWMAN D J. UCI machine learning repository[EB/OL], http: //www.ics.uci.edu/-mlearn/ MLRepository. html. Irvine, CA: University of California, School of Information and Computer Science, 2007.
  • 10屈梁生,张海军.机械诊断中的几个基本问题[J].中国机械工程,2000,11(1):211-216. 被引量:75

共引文献77

同被引文献33

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部