期刊文献+

利用遗传算法改进SOM网络初始权值的乐器分类 被引量:2

Using Genetic Algorithms to Improve the Initial Weights of SOM Network in the Musical Instrument Classification
在线阅读 下载PDF
导出
摘要 针对SOM网络在分类中由于其初始权值的随机性而导致的训练次数过多且易陷入局部最小的问题,提出了利用遗传算法改进网络初始权值的乐器分类。仿真实验提取10种乐器的12阶MFCC系数,之后使用遗传算法计算出每种乐器各阶系数的适应度值,并以此作为网络的初始权值,之后使用已赋初值的SOM网络分类。仿真实验结果表明:利用遗传算法改进SOM网络初始权值的乐器分类方法的分类正确率最高可达到83.51%。 For the problem of excessive training and easy to fall into local minimum in SOM network in the classification caused by the randomness of its initial weight, using genetic algorithm to improve network initial weights in instrument classification is proposed. Simulation experiments extract 12-order MFCC coefficients of 10 different kinds of musical instruments. Then use the genetic algorithm to calculate the fitness value of each order in each instrument, and use the fitness value as the network initial weights. Simulation results show that: the way of using genetic algorithms to improve the initial weights of SOM network in the musical instrument classification is effective and the classification accuracy can reach 83.51%.
作者 杨松 于凤芹
出处 《计算机系统应用》 2012年第4期238-240,共3页 Computer Systems & Applications
基金 国家自然科学基金(61075008)
关键词 乐器分类 自组织特征映射网络 遗传算法 musical instrument classification, SOM network, genetic algorithms
  • 相关文献

参考文献7

  • 1Mueller M,Ellis D,Klapuri A.Signal Processing for MusicAnalysis.IEEE Journal of Selected Topics in SignalProcessing,2011,1(99):1-24.
  • 2Eggink J,Brown G J.A missing feature approach toinstrument identification in polyphonic music.2003 IEEEInternational Conference on Acoustics,Speech and SignalProcessing.Sheffield,2003:553-556.
  • 3Jie X,Jian W,Yan YC.SOM-based classification method formoving object in traffic video.2010 Third InternationalSymposium on Intelligent Information Technology andSecurity Informatics.Suzhou.2010:138-142.
  • 4张奇,苏鸿根.基于高斯混合模型的乐器识别方法[J].计算机工程,2004,30(18):133-134. 被引量:3
  • 5Roisim L,Jacqueline W,Michael ON.An Exploration ofGenetic Algorithms for Efficient Musical InstrumentIdentification.Signals and Systems Conference.Ireland,2010:1-6.
  • 6Yan T,Xu JT,Jiang WG.A Load Distribution Optimizationamong Turbine-generators based on PSO-GA.2011International Conference on Intelligent ComputationTechnology and Automation.Nanchang,2011:15-18.
  • 7Shuai J,Yi L,Guang ML.SOM-based hand gesturerecognition for virtual interactions.2011 IEEE InternationalSymposium on VR Innovation.2011:317-322.

二级参考文献4

  • 1Do M N.Digital Signal Processing Mini-project.http://lcavwww.epfl.ch/-minhdo/asr_proj ect/asr_project.html
  • 2Herrera P,Amatriain X,Batlle E,et al.Towards Instrument Segmentation for Music Content Description:a Critical Review of Instrument Classification Techniques.In Proc.of International Symposium on Music Information Retrieval,2000
  • 3Martin K D,Kim Y E.Musical Instrument Identification:A Patternrecognition Approach.136th Meeting of the Acoustical Society of America,1998- 10-13
  • 4马继勇.[D].哈尔滨工业大学,1998.

共引文献2

同被引文献23

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部