期刊文献+

基于人类感知的SAR图像海上溢油检测算法 被引量:4

Oil Spill Detection by SAR Images Based on Human Perception
原文传递
导出
摘要 在基于SAR图像的海上溢油检测中,识别的效率与准确率是关键。纹理特征是人类专家能够较好的判别SAR图像中油膜,类油膜以及海水的一个重要依据。本文算法一方面融合灰度共生矩阵与Tamura特征,直接对SAR原始图像进行特征提取,避免了对图像进行分割、降噪等预处理,提高了识别算法的可行性与识别效率。另一方面,应用深度信念网络(DBN)的分类方法,可以很好地解决溢油检测中小样本分类的问题,并且模仿人类感知系统高效准确的表示信息、获取本质特征。本文应用人类感知的思想对油膜、类油膜以及海水这3类样本进行分类识别。通过实验确定了DBN中利于分类的关键参数值。本算法对原始SAR图像中3类样本的识别准确率达到90.36%,具有较好的实用价值。 In the study of marine oil spill detection based on SAR images, identification efficiency and accuracy are the key issues. A human expert can determine the oil film,look-alikes, and sea surfaces more easily from texture features, so texture features are an important resource. On the one hand, our algorithm merges Tamura and GLCM features with the original SAR image, and extracts features from SAR image directly. This is an attractive solution for oil spill detection using small samples. This approach also avoids image segmentation, denoising preprocessing, and improves the feasibility and efficiency of identification recognition algorithms. On the other hand, we applied the deep belief network (DBN) to mimic the human perception system's efficient and accurate representation of in- formation to get the essential features. We use the idea of human perception to classify the three kinds of samples (oil film, look-alikes and sea surface). Through experiments; we determined key parameter values in the DBN. Recognition accuracy of this algorithm on three kinds of samples of the original SAR image reached 90.36%, and it has good practical value.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2016年第3期395-401,407,共8页 Geomatics and Information Science of Wuhan University
基金 国家海洋局海洋公益性行业科研专项基金(201305026-3) 上海市科学技术委员基础研究重大重点项目(08240510800)~~
关键词 SAR Tamura特征 灰度共生矩阵 深度信念网络 溢油 SAR Tamura features GLCM deep belief networks oil spill
  • 相关文献

参考文献18

二级参考文献35

  • 1朱俊杰,郭华东,范湘涛,朱博勤.单波段单极化高分辨率SAR图像纹理分类研究[J].国土资源遥感,2005,17(2):36-39. 被引量:8
  • 2张友静,高云霄,黄浩,任立良.基于SVM决策支持树的城市植被类型遥感分类研究[J].遥感学报,2006,10(2):191-196. 被引量:44
  • 3《数学手册》编写组.数学手册[M].北京:高等教育出版社,2006.
  • 4Lee J S, Grunes M R, Grandi G D. Polarimetric SAR speckle filtering and its implication for classification [J ]. IEEE Transactions on Geoscience and Remote Sensiog, 1999, 5: 2363-2373.
  • 5Brekke C, Solberg A H S. Oil spill detection by sateilite remote sensing [J]. Remote Sensing of Environment, 2005, 1: 1-13.
  • 6Haralick R M, Shanmugam K, Dinstein I. Textural features for image classification [J]. IEEE Transactions on Systems Man and Cybernetics, 1973, 6: 610-621.
  • 7Gade M. Signature of oceanic surface films on synthetic aerture radar (SAR) images [EB/OL]. http://www, ifm. uni-hamburg, de/ cleanseas/examples/cs_ sat. htm, 1998.
  • 8Konings H. Oil pollution monitoring on the North Sea [J]. Technical Note Spill Science and Technology Bulletin 1996, 3 : 47-52.
  • 9Alpers W, Mimik L, Hock L, et al. The tropical and subtropical ocean viewed by ERS SAR [EB/OL]. http://www, ifm. uni-hamburg, de/- ers-sar/Sdata/oceanic/oilpol/yellowsea/index, html, 1998.
  • 10Solberg A H S, Dokken S T, Solberg R. Automatic detection of oil spill in ERS SAR images [J ]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 4: 1916-1924.

共引文献79

同被引文献42

引证文献4

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部