期刊文献+

溢油SAR图像分类中的纹理特征选择 被引量:19

Selection of Texture Characteristics in Classifying Oil Spill SAR Images
在线阅读 下载PDF
导出
摘要 针对海洋SAR图像的特点,采用基于灰度共生矩阵的纹理分析方法,提出适用于海洋溢油SAR图像分类的纹理特征量。并讨论了纹理特征量的筛选和纹理窗口大小的确定等问题。最后采用人工神经网络方法验证了SAR图象分类效果。 According to the characteristics of ocean synthetic aperture radar(SAR) images, a texture analysis method based on grey level coccurrence matrix is used, and the texture characteristic quantities suitable for the classification of ocean oil spill SAR images are suggested. The problems with the screening of texture characteristic quantities and the determination of texture window size are discussed, and the artificial neural network method is used to verify the classification results of SAR images.
出处 《海洋科学进展》 CAS CSCD 北大核心 2007年第3期346-354,共9页 Advances in Marine Science
基金 国家海洋局青年海洋科学基金--溢油SAR遥感信息系统关键技术研究(2006401)
关键词 SAR 纹理分析 灰度共生矩阵 人工神经网络 synthetic aperture radar(SAR) grey level co-occurrence matrix artificial neural network
  • 相关文献

参考文献16

  • 1PELLEMANS A,GBOS W,KONINGS H,et al.Oil spill detection on the North Sea using ERS-1 SAR data[EB/OL].[2006-07-06].http://www.neonet.nl/browse.
  • 2PAVLAKIS P,SIEBER A,ALEXANDRY S.Monitoring oil apill pollution in the Mediterranean with ERS SAR[EB/OL].[2006-07-06].http://esapub.esrin.esa.it/eop.
  • 3MANSOR S B,ASSILZADEH H,IBRAHIM H M.Oil spill detection and monitoring from satellite image[EB/OL].[2006-07-06].http://www.gisdevelopment.net/appli2cation/miscellaneous.
  • 4SOLBERG A H,STORVIK G.A large-scale evaluation of features for automatic detection of oil spills in ERS SAR images[J].EGARSS,1996 IEEE:1484-1486.
  • 5SOLBERG A H,STORVIK G,SOLBERG R V.Automatic detection of oil spills in ERS SAR images[J].IEEE Transactions on Geoscience and Remote Sensing,1999,37:1916-1924.
  • 6FRATE F D,PETROCCHI A,LICHTENEGGER J,et al.Neural networks for oil spill detection using ERS-SAR data[J].IEEE Transactions on Geoscience and Remote Sensing,2000,38(5):2282-2287.
  • 7FRATE F D,SALVATORI L.Oil spill detection by means of neutral networks algorithms:A sensitivity analysis[J].EGARSS,2004 IEEE:1370-1373.
  • 8FISCELLA B,GIANCASPRO A,NIRCHIO F,et al.Oil spill detection using marine SAR images[J].International Journal of Remote Sensing,2000,21:3561-3566.
  • 9LU J X.Marine oil spill detection,statics and mapping with ERS SAR imagery in Southeast Asia[J].International Journal of Remote Sensing,2003,24(15):3013-3032.
  • 10郭德军,宋蛰存.基于灰度共生矩阵的纹理图像分类研究[J].林业机械与木工设备,2005,33(7):21-23. 被引量:55

二级参考文献31

  • 1王润生,图像理解,1995年,148页
  • 2潘习哲,星载SAR图像处理,1993年,83页
  • 3Robert M H, Shanmugam K, ITS'HAK Dinstein. Textural Features for Image Classfication[J]. IEEE Transaction on Systems Man and Cyernetics, 1973, 3(6): 610~621.
  • 4Fabio Dell' Acqua, Paolo Gamba. Texture-Based Characte-rization of Urban Environments on Satellite SAR Images[J]. IEEE Transactions on Geoscience and Remote sensing, 2003, 41(1): 153~159.
  • 5Yun Zhang. Optimisation of Building Detection in Satellite Images by Combining Multispectral Classification and Texture Filtering[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 1999,54: 50~60.
  • 6Andrea Baraldi, Flavio Parmiggiani. An Investigation of the Textural Characteristics Associated with Gray Level Cooccurrence Matrix Statistical Parameters[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 33(1): 293~304.
  • 7阎冬梅.[D].北京: 中国科学院遥感应用研究所,2003.
  • 8闻新 周露.MATLAB神经网络应用设计[M].北京:科学出版社,2001..
  • 9周成虎 骆剑承 刘庆生 等.遥感影像地学理解与分析[M].北京:科学出版社,2001..
  • 10Rumelhart D E, Hinton G E, Williams R J. Learninginternal repr esentatio ns by error propagation[A].Rumelhart D E James L.McClelland J L. Parallel di stributed processing: explorations in the microstructure of cognition[C], vol ume 1, Cambridge, MA:MIT Press, 1986.318~362.

共引文献264

同被引文献186

引证文献19

二级引证文献100

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部