期刊文献+

基于混合高斯模型和六帧差分的目标检测算法 被引量:6

Object detection algorithm based on Gaussian mixture model and six-frame difference
在线阅读 下载PDF
导出
摘要 鉴于传统混合高斯模型在光照突变、噪声干扰时鲁棒性不高,易造成检测错误等问题,提出了一种改进的视频运动目标检测算法。该算法将混合高斯模型与六帧差分算法相结合,构建了一种高效的运动目标轮廓模型,并嵌入背景替换法和动态阈值分割法提高算法的稳健性,通过连通性检测和形态学处理,得到完整的运动前景像素。不同场景的视频检测结果表明,改进算法有效克服了光照突变、噪声干扰、空洞及双影现象,与同类算法相比,具有更高的准确度和鲁棒性。 As the traditional Gaussian mixture model has the shortcomings of lower robustness under the illumination change and noise interference,an improved video moving object detection algorithm is presented. Based on Gaussian mixture model and six-frame difference,an efficient moving object contour model is established. The stability of the algorithm is enhanced by embedding background replacement method and dynamic threshold segmentation method,and the complete moving foreground pixels can be gotten through connectivity tests and morphology processing. Video object detection results in different scenarios show that this algorithm can effectively solve the problems,such as the illumination abrupt change,noise interference,light cavity and double phenomenon. Compared with the other algorithms,the improved algorithm has higher robustness.
出处 《激光与红外》 CAS CSCD 北大核心 2016年第2期240-244,共5页 Laser & Infrared
基金 国家自然科学基金项目(No.61263036)资助
关键词 运动目标检测 混合高斯模型 六帧差分 动态阈值 moving object detection Gaussian mixture model six-frame difference dynamic threshold
  • 相关文献

参考文献15

  • 1S Saravanakumar, A Vadivel Saneem, C G Ahmed. Muhi- ple human object tracking using background subtraction and shadow removal techniques [ C ]. The International Conference on Signal and Image Processing (ICSIP), 2010:79 - 84.
  • 2苏晓倩,孙韶媛,戈曼,谯帅,谷小婧.车载红外图像的行人检测与跟踪技术[J].激光与红外,2012,42(8):949-953. 被引量:15
  • 3杨杰,穆平安,戴曙光.一种改进Camshift算法的研究[J].计算机应用与软件,2014,31(2):167-170. 被引量:19
  • 4Barron J L, Fleet D J, Beauchemin S. Performance of opti- cal flow techniques [ J ]. International Journal of Computer Vision, 1994,12 ( 1 ) :42 - 77.
  • 5XIONG C, FAN W, El Z. Traffic flow detection algorithm based on intensity curve of high-resolution image [ C]// Proceedings of the 2nd International Conference on Com- puter Modeling and Simulation. Piscataway: IEEE, 2010 : 159 - 162.
  • 6王小鹏,郭莉琼.公路车流量视频检测方法[J].计算机应用,2012,32(6):1585-1588. 被引量:21
  • 7Meyer D, Denzler J, Niemann H. Model based extraction of articulated objects in image sequences for gait analysis [ C ]//International Conference on Image Processing, SanaBarbara, California : IEEE, 1997:78 - 81.
  • 8范文超,李晓宇,魏凯,陈兴林.基于改进的高斯混合模型的运动目标检测[J].计算机科学,2015,42(5):286-288. 被引量:33
  • 9Dickinson P,Hnnter A, Appiah K. A spatially distributed model for foreground segmentation [ J ]. Image and Vision Computing ,2009,27 (9) : 1326 - 1335.
  • 10朱齐丹,李科,张智,蔡成涛.改进的混合高斯自适应背景模型[J].哈尔滨工程大学学报,2010,31(10):1348-1353. 被引量:15

二级参考文献85

共引文献158

同被引文献44

引证文献6

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部