期刊文献+

监控视频运动目标检测减背景技术的研究现状和展望 被引量:169

Prospects and Current Studies on Background Subtraction Techniques for Moving Objects Detection from Surveillance Video
在线阅读 下载PDF
导出
摘要 在很多计算机视觉应用中,一个基础而关键的任务是从视频序列中确定运动目标,其中对于固定摄像机的监控视频运动目标的检测,最常用的方法是减背景技术。其思想是将视频帧与一个背景模型做比较,其中区别较大的像素区域被认为是运动目标。但由于构建背景模型需要考虑光照变化等很多因素,因此开发一个好的减背景算法面临很多挑战。为了使人们对该技术有个初步了解,该文首先对利用减背景技术实现运动目标检测的过程、目前各种典型背景建模算法的原理和优缺点做了较为详细的阐述和归纳,然后总结了各种减背景算法的总体特点,并结合实验和文献资料对部分算法进行了对比评价,最后指出了减背景技术的未来研究重点和发展方向。 Identifying moving objects from a video sequence is a fundamental and critical task in many computer-vision applications. For surveillance video captured by static camera, the common approach is to perform background subtraction, which identifies moving objects from the portion of a video frame that differs significantly from a background model. However, there are many challenges in developing a good background subtraction algorithm for many factors such as changes in illumination should be considered in constructing a background model. This paper firstly expounds the universal process of detecting objects with background subtraction, all typical background modeling algorithms and their merits. Then their whole characteristics are summarized and the performances of some algorithms are compared based on experiments and other literatures. Finally, key issues and directions of future study in this area are pointed out.
出处 《中国图象图形学报》 CSCD 北大核心 2006年第7期919-927,共9页 Journal of Image and Graphics
基金 国家自然科学基金项目(60273066)
关键词 监控视频 目标检测减背景 背景建模 surveillance video, object detection, background subtraction, background modeling
  • 相关文献

参考文献47

  • 1Mittal A,Huttenlocher D.Scene modeling for wide area surveillance and image synthesis[A].In:Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition[C],Hilton Head Island,SC,USA,2000:160 ~ 167.
  • 2Kang J,Cohen I,Medioni G.Continuous tracking within and across camera streams[A].In:Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition[C],Madison,WI,USA,2003:267~272.
  • 3Wren C,Azabayejani A,Darrel T,et al.Pfinder:Real-time tracking of the human body[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19 (7):780 ~ 785.
  • 4Cutler R,Davis L.View-based detection[A].In:Proceedings of International Conference on Pattern Recognition[C],Brisbane,Australia,1998:495 ~ 500.
  • 5Stauffer C,Grimson W.Learning patterns of activity using real-time tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8):747~ 757.
  • 6KaewTraKulPong P,Bowden R.An improved adaptive background mixture model for real-time tracking with shadow detection[A].In:Proceedings of the 2nd European Workshop on Advanced Video-Based Surveillance Systems[C],Kingston,UK,2001:149 ~ 158.
  • 7Harville M.A framework for high-level feedback to adaptive,perpixel,mixture-of-Gaussian background models[A].In:Proceedings of European Conference on Computer Vision[C],Copenhagen,Denmark,2002,3:543~560.
  • 8Cucchiara R,Piccardi M,Prati A.Detecting moving objects,ghosts,and shadows in video streams[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(10):1337 ~ 1342.
  • 9Elgammal A,Harwood D,Davis L.Non-parametric model for background subtraction[A].In:Proceedings of International Conference on Computer Vision[C],Kerkyra,Greece,1999:751 ~ 767.
  • 10Fuentes L,Velastin S.From tracking to advanced surveillance[A].In:Proceedings of IEEE International Conference on Image Processing[C],Barcelona,Spain,2003:121 ~ 124.

二级参考文献12

  • 1Collins R, Lipton A,Kanade T,et al. A System for Video Surveillance and Monitoring.Tech. Report CM U-RI-TR-00-12,Robotics Institute,Carnegie Mellon University,2000-05.
  • 2Koller D, Daniilidis K,Nagel H.Model-bascd Object Tracking in Monocular Image Sequences of Road traffic Scenes.International Journal of Computer Vision, 1993,10(3).
  • 3Wren C R,Azarbayejani A,Darrell T.Plinder:Real_time Tracking of the Human Body.IEEE Transactions on Pattern Analysis and Machine Intelligence, 1977-07,7.
  • 4Haritaoglu I,Davis L S,Harwood D.W4 Who? When? Where? What? A Rreal Time System for Detecing and Tracking People.In FGR98,1998.
  • 5Mclvor M.Background Subtraction Techniques.IVCNZ00, Hamilton,New Zealand, 2000-11.
  • 6Toyama K,Krumm J.Brumitt B.et al.Wallowver; Principles and Practice of Background Maintenance.ln International Conference on Computer Vision (1999).
  • 7Marcenaro L.Gera G.Rcgazzoni C.Adaptive Change Dctection APProach for Objcet Detection in Outdoor Scenes Under Variable Speed IIIumination Changes.European Signal Processing Conference Eusipco 2000,Tamperc.Finland.
  • 8Cucchiara R,Grana C.Piceardi M.Improving Shadow Suppression in Moving Objcet Detection with HSV Color Information.Proc.of ITSC,2001.
  • 9王栓,中国图象图形学报,1999年,4卷,6期,470页
  • 10Ai Haizhou,学位论文,1996年,55页

共引文献87

同被引文献1181

引证文献169

二级引证文献810

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部