期刊文献+

结合运动方程与卡尔曼滤波的动态目标追踪预测算法 被引量:12

Dynamic Target Tracking and Predicting Algorithm Based on Combination of Motion Equation and Kalman Filter
在线阅读 下载PDF
导出
摘要 针对传统定位技术误差较大且无法预测目标位置等问题,提出了一种结合运动方程与卡尔曼滤波的动态目标追踪预测算法ME-KF。通过运动方程模拟动态目标运动特性,利用卡尔曼滤波来减小干扰噪声对测量结果的影响,并预测下一时刻的目标位置。该算法在辽宁排山楼矿井的人员定位系统中得到了实际应用,并取得了显著成果。实验结果表明,该方法提高了定位精度,能够对人员位置进行预测以及对危险区域进行预警,并且成功地分析判断了障碍物的分布状况。 In the view of problem that the traditional location technology is erroneous greatly, and can not predict the position of the target, this paper presented a dynamic target tracking and predicting algorithm ME-KF combining motion equation and Kalman filter, which simulates the motion characteristics of dynamic target by motion equation, reduces the influence of noise on the measurement results and predicts the position of the target in the next moment. This algorithm has been practically applied to personnel location system of Liaoning Paishanlou mine and has made remarkable achievements. The experimental results show that this method improves the precision of location, predicts people positions, makes early warning of possibly dangerous areas, and can also successfully analyze the distribution of obstacles.
出处 《计算机科学》 CSCD 北大核心 2015年第12期76-81,共6页 Computer Science
基金 国家自然科学基金(61472072) 国家科技支撑计划(2012BAF13B08) 国家"九七三"重点基础研究发展计划前期研究专项(2014CB360509) 辽宁省科学事业公益研究基金项目(2015003003)资助
关键词 无线定位 运动方程 卡尔曼滤波 动态目标 Wireless location, Motion equation, Kalman filter, Dynamic target
  • 相关文献

参考文献13

  • 1Guo Z W,Guo Y, Hong F, et al. Perpendicular intersection: Lo- cating wireless sensors with mobile beacon[J]. IEEE Trans. on Vehicular Technology, 2010,59 (7) : 3501-3509.
  • 2Han G J, Xu H H, Duong T, et al. Localization algorithms of wireless sensor networks: A survey[J]. Telecommunication Sys- tems, 2013,52 (4) : 2429-2436.
  • 3Nekooei S M, Manzuri-Shalmani M T. Location finding in wire- less sensor network based on soft computing methods [C]/// Proc. of the 2011 Int' 1 Conf. on Control, Automation and Sys- tems Engineering (CASE). Singapore, 2011 : 1-5.
  • 4Kulkarni R V, F6rster A, Venayagamoorthy GK. Computational intelligence in wireless sensor networks: A survey[J]. Commu- nications Surveys & Tutorials, 2011,13 ( 1 ) : 68-96.
  • 5叶苗,王宇平.基于变方差概率模型和进化计算的WSN定位算法[J].软件学报,2013,24(4):859-872. 被引量:19
  • 6C Hong-yang, D Ping, X Yong-jun, et al. A robust location algo- rithm with biased extended Kalman filtering of TDOA data for wireless sensor networks[C] ff Proceedings. 2005 International Conference on Wireless Communications, Networking and Mo- bile Computing, 2005. IEEE, 2005,2 : 883-886.
  • 7Chung W C, Ha D S. An accurate ultra wideband (UWB) ran- ging for precision asset loeation[C] ff2003 IEEE Conference on Ultra Wideband Systems and Technologies. IEEE, 2003..389-393.
  • 8崔逊学,卢松升,陈云飞,高浩珉,易廷.基于短基线传感器网络的远场声源TDoA定位组合算法[J].计算机研究与发展,2014,51(3):465-478. 被引量:6
  • 9肖竹,谭光华,李仁发,张小明.无线传感器网络中基于超宽带的TOA/AOA联合定位研究[J].计算机研究与发展,2013,50(3):453-460. 被引量:26
  • 10牛建伟,刘洋,卢邦辉,宋文芳.一种基于Wi-Fi信号指纹的楼宇内定位算法[J].计算机研究与发展,2013,50(3):568-577. 被引量:12

二级参考文献64

共引文献106

同被引文献98

引证文献12

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部