期刊文献+

一种基于Wi-Fi信号指纹的楼宇内定位算法 被引量:12

An In-Building Localization Algorithm Based on Wi-Fi Signal Fingerprint
在线阅读 下载PDF
导出
摘要 由于GPS无法在楼宇内使用,而目前的楼宇内定位技术一般都需要预先部署额外的设施,因此楼宇内无基础设施定位成为了一个热点研究问题.提出了一种利用Wi-Fi接入点的MAC地址和RSSI(received signal strength indication)值,通过机器分类的方式实现楼宇内房间级定位的算法R-kNN(relativity k-nearest neighbor).R-kNN是一种属性加权k近邻算法,它通过将AP之间的相关性反应在权值的分配上,有效地降低了维度冗余对分类准确率的负面影响.R-kNN没有对房间和AP的物理位置做出任何假设,只需要使用环境中现存的AP就可以取得较好的定位效果,无需部署任何额外设施或修改现有设施.实验结果表明,在AP数量较多的楼宇环境中,R-kNN能够取得比k近邻算法和朴素贝叶斯分类器更好的定位效果. Since GPS cannot be used under in-building environment and current in-building localization approaches require pre-installed infrastructure, in-building localization becomes a problem demanding prompt solutions for location-based services. Therefore, this paper proposes a novel room-level in- building localization algorithm R-kNN (relativity k-nearest neighbor), which solves the localization problem by leveraging MAC address and RSSI (received signal strength indication) of Wi-Fi access points (APs) deployed in buildings. R-kNN falls into category of property-weighted k-nearest neighbor algorithm. By assigning the weight of each AP according to the relativity between AP pairs, R-kNN can reduce the negative effect of dimension redundancy. Moreover, since it makes no assumption on the physical distribution of rooms and APs, R-kNN can work well with existing APs without deploying any new infrastructure or modifying the existing ones. Experimental results demonstrate that when a large number of APs are available, the localization accuracy of R-kNN is bigger than those of the original kNN algorithm and naive Bayes classifier, while its false positive ratio and false negative ratio is smaller than those of the original kNN algorithm and Naive Bayes classifier in most cases.
出处 《计算机研究与发展》 EI CSCD 北大核心 2013年第3期568-577,共10页 Journal of Computer Research and Development
基金 国家自然科学基金项目(61170296) 新世纪优秀人才支持计划基金项目(NECT-09-0028) 软件开发环境国家重点实验室基金项目(SKLSDE-2012ZX-17)
关键词 楼宇内定位 WI-FI RSSI K近邻算法 属性加权k近邻算法 in-building localization Wi-Fi received signal strength indication (RSSI) k-nearestneighbor property-weighted k-nearest neighbor
  • 相关文献

参考文献15

  • 1Niculescu D, Nath B. Ad hoc positioning system (APS) using AOA [C]//Proc of the 22nd Annual Joint Conf of the IEEE Computer and Communications Societies. Piscataway, NJ: IEEE, 2003: 1734-1743.
  • 2Zhang Y W, Brown A K, Malik W Q, et al. High resolution 3-D angle of arrival determination for indoor UWB muhipath propagation [J].IEEE Trans on Wireless Communications, 2008, 7(8) : 3047-3055.
  • 3Llombart M, Ciurana M, Barcelo-Arroyo F. On the scalability of a novel WLAN positioning system based on time of arrival measurements [C] //Proc of the 5th Workshop on Positioning, Navigation and Communication. Piscataway, NJ: IEEE, 2008: 15-21.
  • 4Han D, Andersen D, Kaminsky M, et al. Access point localization using local signal strength gradient [C]//Passive and Active Network Measurement. Berlin: Springer, 2009: 99-108.
  • 5Bahl P, Padmanabhan V N. RADAR: An in building RF based user location and tracking system [C]//Proc of the 19th Annual Joint Conf of the IEEE Computer and Communications Societies (INFOCOM 2000). Piscataway. NJ: IEEE, 2000:775-784.
  • 6Gumuskaya H, Hakkoymaz H. WiPoD wireless positioning system based on 802. 11 WLAN infrastructure [J]. Enformatika, 2005, 8(9): 126-130.
  • 7Patel S, Truong K, Abowd G. PowerLine positioning: A practical sub-room-level indoor location system for domestic use [C]//Proc of UbiComp 2006. Berlin: Springer, 2006: 441-458.
  • 8Park J G, Charrow B, Curtis D, et al. Growing an organic indoor location system [C]//Proc of MobiSys'10. New York: ACM, 2010:271-283.
  • 9Castro P, Chiu P, Kremenek T, et al. A probabilistic room location service for wireless networked environments [C] // Proc of UbiComp 2001. Berlin: Springer, 2001 : 18-34.
  • 10Castro L A, Favela J. Continuous tracking of user location in WLANs using recurrent neural networks [C]//Proc of the 6th Mexican lnt Conf on Computer Science. Piscataway, NJ: IEEE, 2005: 174-181.

二级参考文献32

  • 1苏金树,张博锋,徐昕.基于机器学习的文本分类技术研究进展[J].软件学报,2006,17(9):1848-1859. 被引量:391
  • 2Japkowicz N. Learning from imbalanced data sets: A comparison of various strategies, WS-00-05 [R]. Menlo Park, CA: AAAI Press, 2000
  • 3Chawla N V, Japkowicz N, Kotcz A. Editorial: Special issue on learning from imbalaneed data sets [J]. Sigkdd Explorations Newsletters, 2004, 6( 1 ) : 1-6
  • 4Weiss Gary M. Mining with rarity: A unifying frameworks [J]. SIGKDD Explorations Newsletters, 2004, 6(1): 7-19
  • 5Maloof M A. Learning when data sets are imbalanced and when costs are unequal and unknown [OL]. [2008-01-06]. http://www. site. uottawa. ca/-nat/workshop2003/workshop 2003. html
  • 6Chawla N V, Hall L O, Bowyer K W, et al. SMOTE: Synthetic minority oversampling technique [J]. Journal of Artificial Intelligence Research, 2002, 16 : 321-357
  • 7Jo Taeho, Japkowicz Nathalie. Class imbalances versus small disjunets [J]. SIGKDD Explorations Newsletters, 2004, 6 (1): 40-49
  • 8Batista E A P A, Prati R C, Monard M C. A study of the behavior of several methods for halaneing machine learning training data [J]. SIGKDD Explorations Newsletters, 2004, 6(1): 20-29
  • 9Guo Hongyu, Viktor Herna L. Learning from imbalanced data sets with boosting and data generation: The DataBoostIM approach [J]. SIGKDD Explorations Newsletters, 2004, 6(1): 30-39
  • 10Chawla N V, Lazarevic A, Hall L O, et al. Smoteboost: Improving prediction of the minority class in boosting [C] // Proc of the Seventh European Conf on Principles and Practice of Knowledge Discovery in Databases. Berlin: Springer, 2003:107-119

共引文献69

同被引文献81

  • 1丁远,柴思锋.基于物联网智能停车管理系统的应用研究[J].轻工科技,2012,28(3):65-66. 被引量:7
  • 2孙伟,郝爱语,张伟华.Restful Web Services在校园信息集成中的应用[J].软件,2013,34(8):5-6. 被引量:13
  • 3王淑盛,徐正光,刘黄伟,王志良,史立峰.改进的K近邻方法在岩性识别中的应用[J].地球物理学进展,2004,19(2):478-480. 被引量:14
  • 4孙维明,石江宏.由MSP430和CC1100构成的无线传感器网络[J].单片机与嵌入式系统应用,2007,7(8):31-34. 被引量:8
  • 5刘云浩.物联网导论[M].北京:科学出版社,2013:81 -88.
  • 6Guo Z W,Guo Y, Hong F, et al. Perpendicular intersection: Lo- cating wireless sensors with mobile beacon[J]. IEEE Trans. on Vehicular Technology, 2010,59 (7) : 3501-3509.
  • 7Han G J, Xu H H, Duong T, et al. Localization algorithms of wireless sensor networks: A survey[J]. Telecommunication Sys- tems, 2013,52 (4) : 2429-2436.
  • 8Nekooei S M, Manzuri-Shalmani M T. Location finding in wire- less sensor network based on soft computing methods [C]/// Proc. of the 2011 Int' 1 Conf. on Control, Automation and Sys- tems Engineering (CASE). Singapore, 2011 : 1-5.
  • 9Kulkarni R V, F6rster A, Venayagamoorthy GK. Computational intelligence in wireless sensor networks: A survey[J]. Commu- nications Surveys & Tutorials, 2011,13 ( 1 ) : 68-96.
  • 10C Hong-yang, D Ping, X Yong-jun, et al. A robust location algo- rithm with biased extended Kalman filtering of TDOA data for wireless sensor networks[C] ff Proceedings. 2005 International Conference on Wireless Communications, Networking and Mo- bile Computing, 2005. IEEE, 2005,2 : 883-886.

引证文献12

二级引证文献86

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部