期刊文献+

基于局部多项式逼近的图像去噪 被引量:3

Image de-noising based on local polynomial approximation
原文传递
导出
摘要 为了兼得传统图像去噪算法的保边性与高效性的优点,本文根据图像空间相关性,设计了图像局部多项式逼近函数,理论上分析了局部逼近尺度,建立了局部多项式逼近去噪算法:首先对图像像素进行多项式拟合,构造局部多项式逼近函数;其次采用置信区间交集法则自适应选择局部多项式的逼近尺度;最后采用逼近算法对高斯噪声图像进行去噪.实验结果表明,本文算法继承了各向同性扩散的高效性和各向异性的保边性,同时弥补了各向异性扩散实时性较差的不足. In order to have the advantages of edge protecting and high efficiency of traditional methods ofimage de-noising, according to the correlation of image' s space pixels, the paper has designed the localpolynomial approximation function, analyzed the local approximation theoretically and established the al-gorithm of local polynomial approximation (LPA). For the noise image, first, made the polynomial fit-ting for the image pixel, structured the local polynomial approximation function. Second, used intersec-tion of confidence intervals (ICI) rule to select the ideal scale of the local polynomial adaptively. Finally,adopted the algorithm of LPA to de-noise the Gaussian noisy image. Experimental results show that thealgorithm inherits the traditional isotropic de-noising algorithm's advantage of high efficiency and makesup for the anisotropy de-noising algorithm's shortcomings that the computation time is too long, so itcan't meet the needs of the real-time requirement.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第5期1001-1006,共6页 Journal of Sichuan University(Natural Science Edition)
基金 四川省科技支撑项目(2013SF0157)
关键词 图像去噪 局部多项式逼近 置信区间法则 逼近尺度 Image de-noising LPA ICI The ideal scale
  • 相关文献

参考文献14

  • 1Shrivakshan G T, Chandrasekar C. A comparison of various edge detection techniques used in image processing [J]. Int J Comput Sci, 2012, 9 (5) : 269.
  • 2Tian D P. A review on image feature extraction and representation techniques [J]. Int J Mult U- biquitous Eng, 2013, 8 (4): 385.
  • 3Ahn S, Chong J. Segmenting a noisy low-depth-of- field image using adaptive second-order statistics [J]. IEEE SignalProc Lett, 2014, 22 (3): 270.
  • 4Harrabi R, Ben B E. Isotropic and anisotropic fil- tering techniques for image denoising: A compara- tive study with classification [C] // Proceedings of 2012 16th IEEE Mediterranean Electrotechnical Conference. Yasmine Hammamet: Institute of E- lectrical and Electronics Engineers Inc, 2012.
  • 5Veerakumar T, Esakkirajan S, Vennil L. Edge pre- serving adaptive anisotropic diffusion filter approach for the suppression of impulse noise in images [J]. AEU-Int J Electron C, 2024, 68 (5): 442.
  • 6Matei R. Design of 2D parametric filters for direc- tional gaussian smoothing [C] // Proceedings of 2013 European Conference on Circuit Theory and Design. Dresden: IEEE Computer Society, 2013.
  • 7Xu H, Shuai Y, He W. The image reconstruction algorithm based on wiener filtering [C] // Pro- ceedings of 9th International Conference on Corn-putational Intelligence and Security. Emeishan: IEEE Computer Society , 2013.
  • 8Luo E, Pan S, Nguyen T. Generalized non-local means for iterative denoising [C] // Proceedings of the 20th European Signal Processing Con{er- ence. Bucharest: European Signal Processing Con- ference, 2012.
  • 9单建华.改进权值函数的非局部均值去噪算法[J].中国图象图形学报,2012,17(10):1227-1231. 被引量:17
  • 10Dabov K, Foi A, Katkovnik V, et al. Image de noising by sparse 3D transform-domain collabora- tive ltering [J]. IEEE Trans Image Proc, 2007, 16 (8) : 2080.

二级参考文献13

  • 1Liu C, Szeliski R, Kang S B, et al. Freeman, Automatic estima- tion and removal of noise from a single image [ J]. IEEE Transac- tions on Pattern Analysis and Machine Intelligence ,2008,30 (2) : 299-314.
  • 2Donoho D L, Johnstone I M. Ideal spatial adaptation via wavelet shrinkage [ J]. Biometrika, 1994,81 (3) :425-455.
  • 3Luisier F, Blu T. SURE-LET muhichannel image denoising: interscale orthonormal wavelet thresholding [ J]. IEEE Trans-actions on Image Processing, 2008,17 ( 4 ) : 482-492.
  • 4Perona P, Malik J. Scale-space and edge detection using an iso- tropic diffusion [ J]. IEEE Transactions on Pattern Analysis and Machines Intelligence, 1990,12 (7) : 629 -639.
  • 5Bai J,Feng X C. Fractional-order anisotropic diffusion for image denoising [ J]. IEEE Transactions on Image Processing,2007, 16(10) :2492-2502.
  • 6Tomasi C, Manduchi R. Bilateral filtering for:gray and color ima- ges [ C ]. Proceedings of the International Conference on Comput- er Vision. Bombay, India : IEEE, 1998 : 839-846.
  • 7Buades A, Coil B, Morel J M. A non-local algorithm for image de- noising [ C ]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. San Diego, CA, USA : IEEE, 2005:60-65.
  • 8Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms [J]. Physica D,1992,60:259-268.
  • 9Chen Q, Sun Q S, Xia D S. Homogeneity similarity based image denoising [J]. Pattern Recognition,2010,43:4089-4100.
  • 10Grewenig S, Zimmer S, Weickert J. Rotationally invariant similar- ity measures for nonlocal image denoising [ J ]. J. Vis. Com- mun. Image R,2011,22:117-130.

共引文献16

同被引文献34

引证文献3

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部