期刊文献+

无监督模糊C均值聚类自然图像分割算法 被引量:9

Natural image segmentation algorithm with unsupervised FCM
原文传递
导出
摘要 提出一种基于无监督模糊C均值聚类的彩色自然图像分割算法。使用置信区间交集准则自适应得到Gabor滤波器中各个像素点对应的尺度,并以该自适应尺度为依据,计算相应的自适应方向、频率以及相位;使用该自适应Gabor滤波方法分别对各通道进行纹理分析得到相应的纹理图像。提出一种快速的基于多项式分割的方法对各个纹理图像进行分析,确定聚类数目,并使用无监督模糊C均值聚类算法得到最终的分割结果。实验结果表明,该算法能够很好地克服图像纹理对于分割结果的影响,有效区分目标与背景,分割结果具有较高的分割精度,是一种有效的自然彩色图像分割方法。 In this work, we propose a natural image segmentation method based on unsupervised fuzzy C-means (USFCM) clustering algorithm. The intersection of confidence intervals rules is utilized to adaptively compute the scale of Gabor filter for each pixel. Then image features are measured by Gabor filter with adaptively computed scale, orientation, frequency and phase. Meanwhile, a fast polynomial segmentation method is proposed to determine the number of clusters. Then the algorithm USFCM is utilized to get the final segnientation. The experimental results show that the proposed method can overcome the impact of texture and distinguish the target from background. The performances have demonstrated the effectiveness, accuracy and superiority of the proposed method.
出处 《中国图象图形学报》 CSCD 北大核心 2011年第5期773-783,共11页 Journal of Image and Graphics
基金 国家自然科学基金项目(60805003/60773172)
关键词 自然图像分割 无监督聚类 模糊C均值 GABOR滤波 置信区间交集 纹理特征 nature image segmentation unsupervised clustering FCM Gabor filter intersection of confidence intervals (ICI) texture features
  • 相关文献

参考文献29

  • 1Haralick R,Shapiro L.Image segmentation techniques[J].Computer Vision,Graphics,and Image Processing,1985,29(1):100-132.
  • 2Yang A Y,Wright J,Ma Y,et al.Unsuperrised segmentation of natural images via lossy data compression[J].Computer Vision and Image Understanding,2008,110(2):212-225.
  • 3Tu Z,Zhu S C.Image segmentation by data-driven Markov chain Monte Carlo[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(5):657-673.
  • 4Zhu S,Yuille A.Region competition:unifying snakes,region growing,and Bayes/MDL for multiband image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1996,18 (9):884-900.
  • 5Yu S.Segmentation induced by scale invariance[C]// Proceedings of International Conference on Computer Vision and Pattern Recognition.Washington-IEEE Computer Society Press,2005-444-451.
  • 6Comanicu D,Meer P.Mean shift:a robust approach toward feature space analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(5):603-619.
  • 7Shi J,Malik J.Normalized cuts and image segmentation[C]// Proceedings of International Conference on Computer Vision and Pattern Recognition.Washington:IEEE Computer Society Press,1997; 731-737.
  • 8Felzenszwalb P,Huttenlocher D.Efficient graph-based image segmentation[J].International Journal on Computer Vision,2004,59(2):167-181.
  • 9Kanungo T,Dom B,Niblack W,et al.A fast algorithm for MDL-based multi-band image segmentation[C]// Proceedings of International Conference on Computer Vision and Pattern Recognition.Washington:IEEE Computer Society Press,1994; 609-616.
  • 10Khan J,Adhami R,Bhuiyan S.A customized Cabor filter for unsupervised color image segmentation[J].Image and Vision Computing,2009,27(4):489-501.

二级参考文献16

  • 1刘华军,任明武,杨静宇.一种改进的基于模糊聚类的图像分割方法[J].中国图象图形学报,2006,11(9):1312-1316. 被引量:23
  • 2李云松,李明.基于灰度空间特征的模糊C均值聚类图像分割[J].计算机工程与设计,2007,28(6):1358-1360. 被引量:27
  • 3Dunn J C. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated cluster[J].Journal of Cybernetics and Systems, 1973, 3(3):32-57.
  • 4Bezdek J C. Pattern recognition with fuzzy objective function algorithms [M]. New York: Plenum Press, 1981.
  • 5Pham D L, Prince J L. Adaptive fuzzy segmentation of magnetic resonance images [J]. IEEE Transactions on Medical Imaging, 1999, 18(9): 737-752.
  • 6Ahmed M N, Yamany S M, Mohamed N, et al. A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data [J]. IEEE Transactions on Medical Imaging, 2002, 21(3): 193-199.
  • 7Chen S, Zhang D Q. Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure [J]. IEEE Transactions on System Man and Cybernetics-Part B, 2004, 34(4) : 1907-1916.
  • 8Szilagyi L, Benyo Z, Szilagyi S M, et al. MR brain image segmentation using an enhanced fuzzy C-means algorithm[C]//Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Cancun, 2003:724-726.
  • 9Cai W, Chen S, Zhang D Q. Fast and robust fuzzy C-means clustering algorithms incorporating local information for image segmentation [J]. Pattern Recognition, 2007, 40(3) : 825-838.
  • 10Szilagyi L, Szilagyi S M, Benyo Z. A modified FCM algorithm for fast segmentation of brain MR images [M] // Analysis and Design of Intelligent Systems Using Soft Computing Techniques. Heidelberg: Springer, 2007, 41: 119-127.

共引文献25

同被引文献87

引证文献9

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部