摘要
网络的传感器节点向处理中心传输局部估计时,不可避免地存在随机延迟,从而导致航迹无序现象频发。在分布式框架下,研究多传感器时滞航迹的融合估计问题。采用最新可利用的局部估计原则,若未收到最新局部估计,则用之前收到的最新的估计进行预报。进而,运用避免计算互协方差阵的CI算法进行分布式融合。避免了计算互协方差阵,且能改善局部估计的精度。仿真例子说明算法的有效性。
When the sensors in networks transmit local estimates to the processing center, there exist random delays inevitably and lead to the phenomenon of out of-sequence tracks. Based on a distributed framework, the fusion estimation problem for multi-sensor delayed tracks is studied. Using the newest available local estimate principle, if there is no local estimate received in the present moment, the newest local filter received previously will be used for prediction. Further, the CI algorithm which avoids the calculation of cross covariance matrices is applied for distributed fusion. It not only avoids computing cross-covariance matrices but also improves local estimation accuracy. The simulation example shows the validity of the proposed algorithm.
出处
《黑龙江大学工程学报》
2015年第3期68-72,共5页
Journal of Engineering of Heilongjiang University
基金
国家自然科学基金资助项目(61174139)