期刊文献+

带有色观测噪声多传感器多重时滞系统分布式融合滤波器 被引量:2

Distributed Fusion Filter for Multi-sensor Multi-delay Systems with Colored Measurement Noises
在线阅读 下载PDF
导出
摘要 基于新息分析方法,对带有色观测噪声的多重时滞系统,提出了一种带自噪声估值器的非增广的最优滤波器.它等价于一个带相关白噪声多重时滞系统的一步预报器.当系统带有多个传感器时,推导了多重时滞系统的任意两个传感器子系统之间的估计误差互协方差阵.基于线性最小方差最优加权融合估计算法,给出了分布式加权融合最优滤波器.分布式融合估计比基于每个传感器的局部估计具有更高的精度.比增广的集中式最优滤波器具有更好的可靠性,且避免了高维计算和大存储空间.仿真例子验证了其有效性. Based on the innovation analysis approach, a non-augmented optimal filter with a white noise estimator is presented for a multiple time-delay system with colored measurement noise. It is equivalent to the first-step predictor for a multiple time-delay system with correlated white noise. When the system contains multiple sensors, the estimation error cross-covariance matrix between any two sensor subsystems is derived for the multiple time-delay system. A distributed weighted fusion optimal filter is given based on the optimal weighted fusion estimation algorithm in the linear minimum variance sense. The distributed fusion filter has a higher accuracy than the local filter based on each sensor. It has better reliability than the centralized optimal filter by augmentation, and avoids the high-dimensional computation and the large space memory. An example shows its effectiveness.
作者 孙书利 吕楠
出处 《自动化学报》 EI CSCD 北大核心 2009年第1期46-53,共8页 Acta Automatica Sinica
基金 国家自然科学基金(60504034) 黑龙江省青年骨干教师基金(1151G035)资助~~
关键词 多重时滞系统 有色观测噪声 信息融合 分布式最优滤波器 Multi-delay system, colored measurement noise, information fusion, distributed optimal filter
  • 相关文献

参考文献6

二级参考文献33

  • 1睢刚,陈来九.动态系统模糊模型辨识及其自学习算法[J].自动化学报,1995,21(6):749-753. 被引量:5
  • 2Mahmoud M S, Xie L, Soh Y C. Robust Kalman filtering for discrete state-delay systems, IEE Proceedings of Control Theory Application, 2000, 147(6): 613-618.
  • 3Larsen T D, Andersen N A, Ravn O, Poulsen N K. Incorporation of time delayed measurements in a discrete-time Kalman filter. In:Proceedings of 37th IEEE Conference Decision Control, Tampa, FL, 1998. 3972-3977.
  • 4Wang Z D, Huang B, Unbehauen H. Robust H- observer design of linear state delayed systems with parametric uncertainty.- the discrete-time case. Automatica, 1999, 35(6): 1161-1167.
  • 5Palhares R M, De Souza C E, Peres P L D. Robust H-filtering for uncertain discrete-time state delayed systems.IEEE Transactions on Signal Processing. 2001 - 49(8) - 1696-1703.
  • 6Wilson D A. Convolution and Hankel operator norms for linear systems. IEEE Transactions on Automatic Control,1989, 34(1): 94-97.
  • 7Rotea M A. The generalized H2 control problem. Automatica, 1993, 29(2): 373-385.
  • 8Grigoriadis K M, Watson J T. Reduced order H-and L2--L- filtering via linear matrix inequalities. IEEE Transactions on Aerostmce and Electronic Systems, 1997. 33(4): 1326-1338.
  • 9Watson J T, Grigoriadis K M. Optimal unbiased filtering via linear matrix inequalities. Systems Control Letters,1998, 35(1)- 111-118.
  • 10Palhares R M, Peres P L D. Robust filtering with guaranteed energy-to-peak performance--an LMI approach. Automatica, 2000, 36(4)- 851-858.

共引文献59

同被引文献20

  • 1孙平,井元伟.基于采样测量值的不确定系统鲁棒H∞滤波[J].控制与决策,2006,21(6):697-700. 被引量:2
  • 2Schenato L. Optimal estimation in networked control systems subject to random delay and packet loss. In: Proceedings of the 45th Conference on Decision and Control. San Diego, USA: IEEE, 2006. 5615-5620.
  • 3Huang M Y, Dey S. Stability of Kalman filtering with Markovian packet losses. Automatica, 2007, 43(4): 598-607.
  • 4Malyavej V, Savkin A V. The problem of optimal robust Kalman state estimation via limited capacity digital communication channels. Systems and Control Letters, 2005, 54(3): 283-292.
  • 5Dong Z, You Z. Finite-horizon robust Kalman filtering for uncertain discrete time-varying systems with uncertainconvariance white noise. IEEE Signal Processing Letters, 2006, 13(8): 493-496.
  • 6Oliveira R C L F, Peres P L D. LMI conditions for robust stability analysis based on polynomially parameterdependent Lyapunov functions. System and Control Letter, 2006, 55(1): 52-61.
  • 7Wang Z D, Yang F W, Ho D W C, Liu X. Robust finitehorizon filtering for stochastic system with missing measurements. IEEE Signal Processing Letters, 2005, 12(6): 437-440.
  • 8Wang Z D, Ho D W C, Liu X H. Variance-constrained filtering for uncertain stochastic systems with missing measurements. IEEE Transactions on Automatic Control, 2003, 48(7): 1254-1258.
  • 9Gao H J, Chen T W. Ha estimation for uncertain systems with limited communication capacity. IEEE Transactions on Automatic Control, 2007, 52(11): 2070-2084.
  • 10Sun S L, Xie L H, Xiao W D, Xiao N. Optimal filtering for systems with multiple packet dropouts. IEEE Transactions on Circuits and Systems II: Express Briefs, 2008, 55(7): 695-699.

引证文献2

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部