期刊文献+

Differential-difference Complex and the Poincar′e Lemma

微分差分复形及其庞加莱引理(英文)
在线阅读 下载PDF
导出
摘要 Dierential geometry play a fundamental role in discussing partial dierential equations(PDEs) in mathematical physics. Recently discrete dierential geometry is an active mathematical terrain, which aims at the development and application of discrete equivalents of the geometric notions and methods of dierential geometry. In this paper, a discrete theory of exterior dierential calculus and the analogue of the Poincar′e lemma for dierential-dierence complex are proposed. They provide an intrinsic idea for developing the theory to discuss the integrability of dierence equations.
出处 《Chinese Quarterly Journal of Mathematics》 2015年第1期1-11,共11页 数学季刊(英文版)
基金 Supported by the NSFC(10801045)
关键词 noncommutative differential calculus differential-difference complex EXACT noncommutative differential calculus differential-difference complex exact
  • 相关文献

参考文献19

  • 1MARATHE K B, MARTUCCI G. The Mathematical Foundation of Gauge Theories[M]. North-Holland Elsevier Science Publishers, 1902.
  • 2SCHOEN R, YAU S T. Positivity of the total mass of a general space-time[J]. Phys Rev Lett, 1979, 43 1457-1459.
  • 3ATIYAH M F, HITCHIN N J, DRINFELD V G, et al. Construction of instantons[J]. Phys Lett A, 1978 65: 185-187.
  • 4CONNES A. N Geometry[M]. New York: Academic Press, 1994.
  • 5CONNES A, LOTT J. Particle models and 18B." 29-47. tative geometry[J]. Nucl Phys B Proc Suppl, 1990.
  • 6CHAMSEDDINE A H, CONNES A, Universal formula for noncommutative geometry actions: unification of gravity and the standard model[J]. Phys Rev Lett, 1996, 77(24): 4868-4871.
  • 7CONNES A, DOUGLAS M, SCHWARTZ A. Noncommutative geometry and matrix theory: compactifica- tion on tori[J]. J High Energy Phys, 1998, 02: 003-037.
  • 8SITARZ A. Noncommutative geometry and gauge theories on discrete groups[J]. J Geom Phys, 1995, 15: 123.
  • 9DIMAKIS A, Muller-Hoissen F, STRIKER T. Noncommutative differential calculus and lattice gauge the- ory[J]. J Phys A: Math Gen, 1993, 26:1927 .
  • 10DIMAKIS A, Muller-Hoissen F, Striker T. Differential calculus and gauge theory on finite sets[J]. J Phys A: Math Gen, 1994, 27:3159 .

二级参考文献57

  • 1Guo H Y,Commun Theor Phys,2000年,34卷,245页
  • 2Guo H Y,Commun Theor Phys,2000年,34卷,307页
  • 3Guo H Y,CCAST-WL Workshop Series,1999年,167页
  • 4Guo H Y,The CCAST-WL Workshop on Computational Methods and Their Applications in Physics and Mechanics,1999年
  • 5Guo H Y,the CCAST-WL Workshop on Genetic Algorithm and Its Applications,1999年
  • 6Guo H Y,the CCAST-WL Workshop on Integrable System,1999年
  • 7Guo H Y,the CCAST-WL Workshop on Structure Preserving Algorithms and Applications,1999年
  • 8Guo H Y,Workshop on Quantum Field Theories,1998年
  • 9冯康,冯康文集,1995年
  • 10冯康,Proc of the 1984 Beijing Symposium on Differential Geometry and Differential Equations-Computation o,1985年

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部