期刊文献+

基于梯度角度的直方图局部特征描述子的图像匹配算法 被引量:16

Image matching algorithm based on histogram of gradient angle local feature descriptor
在线阅读 下载PDF
导出
摘要 针对传统的局部特征描述子在图像匹配效果和效率上很难兼顾的问题,提出了一种基于梯度角度的直方图(HGA)的图像匹配算法。该算法先通过加速片段测试特征(FAST)获取的图像关键点,然后采用块梯度计算和飞镖靶型结构对局部区域的结构特征进行描述。HGA有效地实现了在旋转、模糊、亮度等多种变换下的良好匹配性能,并在一定程度上具备抗仿射变换的能力。在各种复杂场景下,与高速鲁棒描述子(SURF)、尺度不变特征转换(SIFT)和FAST定向的抗旋转二进制鲁棒独立基元特征(BRIEF)描述子(ORB)进行的实验对比表明基于梯度角度的直方图局部特征描述子达到了匹配效果和效率的均衡,算法时间约为SIFT的1/3,点对匹配准确率均在94.5%以上。 In order to solve the problem that it is difficult to leverage the performances of effect and efficiency, an image matching algorithm based on the Histogram of Gradient Angle( HGA) was proposed. After obtaining the key points by Features from Accelerated Segment Test( FAST), the block gradient and the new structure as dartboards were introduced to descript the local structure feature. The image matching algorithm based on HGA can work against the rotation, blur and luminance and overcome the affine partly. The experimental results, compared with Speeded Up Robust Feature( SURF), Scale Invariant Feature Transform( SIFT) and ORB( Oriented FAST and Rotated Binary Robust Independent Elementary Features( BRIEF))in the complex scenes, demonstrate that the performance of HGA is better than other descriptors. Additionally, HGA achieves an accuracy of over 94. 5% with only 1 /3 of the time consumption of SIFT.
出处 《计算机应用》 CSCD 北大核心 2015年第4期1079-1083,共5页 journal of Computer Applications
基金 中国博士后科学基金资助项目(2014M562028) 湖南省教育厅项目(14C0599)
关键词 角度直方图 局部特征描述子 多自由度 结构特征 图像匹配 Histogram of Gradient Angle(HGA) local descriptor multi-degree of freedom structure information image matching
  • 相关文献

参考文献15

  • 1余时伟,黄廷祝,刘晓云,陈武凡.显著图引导下基于偏互信息的医学图像配准[J].仪器仪表学报,2013,34(6):1218-1225. 被引量:10
  • 2葛盼盼,陈强,顾一禾.基于Harris角点和SURF特征的遥感图像匹配算法[J].计算机应用研究,2014,31(7):2205-2208. 被引量:32
  • 3谢文吉,孙晓刚,张亮.基于尺度不变特征变换特征点应用于印刷检测的快速匹配算法[J].计算机应用,2013,33(A01):186-189. 被引量:4
  • 4LIU J, WU H. A new image registration method based on frame and gray information[ C]// Proceedings of the 2012 International Confer- ence on Computer Distributed Control and Intelligent Environmental Monitoring. Piscataway: IEEE Press, 2012:48-51.
  • 5CAO Z, DONG E. Multi-modal image registration using edge neigh- bourhood descriptor[ J]. Electronics Letters, 2014, 50(10) : 752 - 754.
  • 6MAIK V, CHAE E, LEE E, et al. Robust sub-pixel image registra- tion based on combination of local phase correlation and feature anal- ysis[ C]// ISCE 2014: Proceedings of the 18th IEEE International Symposium on Consumer Electronics. Piscataway: IEEE Press, 2014:1-2.
  • 7SHAH S A A, BENNAMOUN M, BOUSSAID F, et al. 3D-Div: a novel local surface descriptor for feature matching and pairwise range image registration[ C]//Proceedings of the 2013 20th IEEE Interna- tional Conference on Image Processing. Piscataway: IEEE Press, 2013:2934-2938.
  • 8KIM H, LEE S. A novel line matching method based on intersection context[ C]// Proceedings of the 2010 IEEE International Confer- ence on Robotics and Automation. Piscataway: IEEE Press, 2010: 1014 - 1021.
  • 9YU B, GUO L, ZHAO T, et al. A curve matching algorithm based on Freeman chain code[ C] // Proceedings of the 2010 IEEE Intema-tional Conference on Intelligent Computing and Intelligent Systems. Piscataway: IEEE Press, 2010, 3:669-672.
  • 10OJALA T, PIETIKAINEN M, HARWOOD D. Performance evalua- tion of texture measures With classification based on Kullback dis- crlmination of distributions[ C] // Proceedings of the 12th IAPR In- ternational Conference on Pattern Recognition. Piscataway: IEEE Press, 1994, 1:582-585.

二级参考文献44

  • 1郑明玲,刘衡竹.遥感图像配准中特征点选择的高性能算法研究及其实现[J].计算机学报,2004,27(9):1284-1289. 被引量:17
  • 2骞森,朱剑英.基于改进的SIFT特征的图像双向匹配算法[J].机械科学与技术,2007,26(9):1179-1182. 被引量:44
  • 3杨晓敏,吴炜,卿粼波,等.图像特征点提取及匹配技术[J]. 光学精密上程,2009,17(9J:2276.
  • 4YU SH W, HUANG T Z, LIU X Y, et al. Information measures based on fractional calculus [ J ].Information Processing Letter, 2012,112 ( 23 ) :916-921.
  • 5RAO M,CHEN Y,VEMURI B C,et al. Cumulative resid- ual entropy: A new measure of information [ J ]. IEEE Trans on Information Theory, 2004,50 (6) :1220-1228.
  • 6YU SH W, LIU X Y, CHEN W F. Cross survival entropy and its application in image registration [ J ]. lOth IEEE/ ACIS International Conference on Computer and Informa- tion Science,2011 : 184-188.
  • 7OU Y, SOTIRAS A, PARAGIOS N, et al. DRAMMS : De- formable registration via attribute matching and mutual- saliency weighting [ J ]. Medical Image Analysis, 2011, 15:622-639.
  • 8GUIASU S. Information theory with applications [ M ]. New York : McGraw Hill Inc, 1977.
  • 9SHORE J E, IOHNSON R W. Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy [ J ]. IEEE Trans. Inf. Theory, 1980, 26 ( 1 ) : 26-37.
  • 10MAES F, COLLIGNON A, VANDERMEULEN D, et al. Multi-modality image registration by maximization of mutual information [ J ]. IEEE Trans. Med. Imag. , 1997, 16 ( 2 ) : 187-198.

共引文献41

同被引文献121

  • 1郭龙源,夏永泉,杨静宇.一种改进的彩色图像匹配算法[J].计算机工程与应用,2007,43(27):98-99. 被引量:2
  • 2Li Hao, Duan Haibin, Zhang Xiangyin. A novel image template mat- ching based on particle filtering optimization [ J ]. Pattern Recogni- tion Letters, 2010,31 (13) : 1825-1832.
  • 3Perlin H A, Lopes H S, Centeo T M. Particle swarm optimization for object recognition in computer vision [ C ]//New Frontiers in Applied Artificial Intelligence, Lecture Notes in Computer Science, vol 5027. 2008 : 11-21.
  • 4Liu Fang, Duan Haibin, Dang Yimin. A chaotic quantum-behaved particle swarm optimization based on lateral inhibition for image mat- ching[ J]. International Journal for Light and Electron Optics, 2012,123(21 ) : 1955-1960.
  • 5Campbell C, Johnson R, Miller A, et al. Parallel programming with Microsoft. NET[M]. 2012.
  • 6Haq A N, Karthikeyan K, Sivakumar K, et al. Particle swarm opti- mizatinn(PSO) algorithm for optimal machining allocation of clutch assembly[ J]. The International Journal of Advanced Manufac- turing Technology, 2005,27(9) :865-869.
  • 7An Ru, Chen Chunye, Wang Huilin. An improved particle swarm op- timization algorithm for image matching [ C ]//Proc of the Internatio- nal Forum on Computer Science-Technology and Applications. 2009 : 6-10.
  • 8Shi Yuhui, Eberhart R. A modified particle swarm optimizer[ C ]// Proc of IEEE International Conference on Evolutionary Computation. 1998 : 69-73.
  • 9Eberhart R, Shi Yuhui. Comparing inertia weights and constriction factors in particle swarm optimization[ C]//Proc of IEEE Congress on Evolutionary Computation. 2000: 84-88.
  • 10Eberhart R ,Shi Yuhui. Tracking and optimizing dynamic systems with particle swarms[ C]//Proc of IEEE Congress on Evolutionary Compu- tation. 2001 : 94-100.

引证文献16

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部