期刊文献+

基于尺度不变特征变换特征点应用于印刷检测的快速匹配算法 被引量:4

Fast matching algorithm in printing quality detection based on scale-invariant feature transform feature points
在线阅读 下载PDF
导出
摘要 基于机器视觉的质量检测在印刷行业的应用日益重要,而图像匹配算法是其中的关键步骤。针对此问题提出一种应用于印刷行业的快速高精度匹配算法。首先利用尺度不变特征转换(SIFT)算法精确稳定地提取关键点,然后通过基于灰度相关系数的模板匹配算法在定位图像与模板图像的关键点之间找到匹配关系,并结合随机抽样一致(RANSAC)方法剔除错误匹配,从而使得整个快速匹配算法高效、稳定、准确。与SIFT算法比较,该算法不仅在时间上快很多,能够满足实时应用的要求,并且极少出现错误匹配。 With rapid development of printing industry recently, the quality detection based on computer vision in the printing industry is becoming increasingly important. Since the image matching algorithm is one of the key steps, this paper proposed a fast high-precision matching algorithm for application of printing industry. Firstly used the Scale-Invariant Feature Transform (SIFT) algorithm to extract the key points accurately and stability, then adopted the template matching algorithm, which was based on gray correlation coefficient, to match the relationship between the key points of matching image and template image respectively, furthermore, the RANdom SAmple Consensus (RANSAC) method eliminated false matches. The experimental results show that the improved SIFT algorithm is not only faster than before and can meet the requirements of real- time applications, but also ensure minimal error matching in terms of accuracy.
出处 《计算机应用》 CSCD 北大核心 2013年第A01期186-189,共4页 journal of Computer Applications
关键词 图像匹配 模板匹配 尺度不变特征转换算法 印刷质量检测 亚像素 image matching template matching Scale-Invariant Feature Transform(SIFT) algorithm printing quality detection sub-pixel
  • 相关文献

参考文献15

  • 1LOWE D E. Object recognition from local scale-invariant features[C]// ICC\r,99: Proceedings of the International Conference onComputer Vision. Washington, DC: IEEE Computer Society,1999:1150.
  • 2MIKONAICZYK K, SCHMID C. A performance evaluation of localdescriptors[ J]. IEEE Transactions on Pattern Analysis and MachineIntelligence, 2005,27(10): 1615 -1630.
  • 3赵垒,侯振杰.一种改进的SIFT图像配准方法[J].计算机工程,2010,36(12):226-228. 被引量:19
  • 4IJ C L, MA L Z. A new framework for feature descriptor based onSIFT[ J]. Pattern Recognition Letters,2009, 30(5): 544 - 557.
  • 5LO认「E D G. Distinctive image features from scale-invariant key|>oints[J]. Intemali(>nal Jouma] of Owr^mter Vision,2004,60(2): 91 -110.
  • 6刘立,彭复员,赵坤,万亚平.采用简化SIFT算法实现快速图像匹配[J].红外与激光工程,2008,37(1):181-184. 被引量:92
  • 7夏一民,黄文清,吴铮.基于多尺度下特征点的检测[J].计算机工程与设计,2008,29(10):2668-2670. 被引量:5
  • 8SHIN D, TJAHJADI r\\ Clique descriptor of affine invariant regionsfor robust wide baseline image matching[ JJ. Pattern Recognition,2010,43(10): 3261 -3272.
  • 9CHOI M-S, KIM W-Y. A novel two stage template matching methodfor rotation and illumination invariance [ J 丨. Pattern Recognition,2002,35(1): 119-129.
  • 10UIJAH F, KANEKO S. Using orientation codes for rotation invarianttemplate matching[J]. Pattern Recognition,2004, 37(2): 210 - 209.

二级参考文献65

  • 1付金红,宋立新,王武军.图像序列拼接算法的研究[J].哈尔滨理工大学学报,2004,9(6):37-40. 被引量:4
  • 2张静,胡志萍,刘志泰,欧宗瑛.基于轮廓相位相关的图像自动拼接[J].大连理工大学学报,2005,45(1):68-74. 被引量:9
  • 3王兆仲,周付根,刘志芳,杨建峰.一种高精度的图像匹配算法[J].红外与激光工程,2006,35(6):751-755. 被引量:9
  • 4Kuglin C D,Hines D C.The Phase Correlation Image Alignment Method[C] //Proc.of IEEE Conference on Cybernetics and Society.New York,USA:[s.n.] ,1975.
  • 5David G.Object Recognition from Local Scale-invariant Features[J].International Conference on Computer Vision,1999,9(2):1150-1157.
  • 6Ke Yan,Sukthankar R.PCA-SIFT:A More Distinctive Representation for Local Image Descriptors[C] //Proc.of the Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:[s.n.] ,2004.
  • 7Ganapathy S.Decomposition of Transformation Matrices for Robot Vision[C] //Proc.of the Int'l Conf.on Robotics and Automation.[S.l.] :IEEE Press,1984.
  • 8Harris C.Stephens M.A combined corner and edge detector[A].Proc.of The Fourth Alvey Vision Conference[C],Manchestsr,UK,1988:147-151
  • 9Tomasi C,Kanade T.Detection and Tracking of Point Features[R].Carnegie Mellon University Technical Report CMU-CS-91-132,Pittsburgh,USA,Apr 1991
  • 10Lowe D G.Object recognition from local scale-invariant features[A].International Conference on Computer Vision[C],Corfu,Greece,Sep 1999:1150-1157

共引文献209

同被引文献40

  • 1郝云峰,戚飞虎,蒋人杰.一种新的基于机器学习的2维条形码检测算法[J].中国图象图形学报,2007,12(10):1873-1876. 被引量:6
  • 2LIU J, WU H. A new image registration method based on frame and gray information[ C]// Proceedings of the 2012 International Confer- ence on Computer Distributed Control and Intelligent Environmental Monitoring. Piscataway: IEEE Press, 2012:48-51.
  • 3CAO Z, DONG E. Multi-modal image registration using edge neigh- bourhood descriptor[ J]. Electronics Letters, 2014, 50(10) : 752 - 754.
  • 4MAIK V, CHAE E, LEE E, et al. Robust sub-pixel image registra- tion based on combination of local phase correlation and feature anal- ysis[ C]// ISCE 2014: Proceedings of the 18th IEEE International Symposium on Consumer Electronics. Piscataway: IEEE Press, 2014:1-2.
  • 5SHAH S A A, BENNAMOUN M, BOUSSAID F, et al. 3D-Div: a novel local surface descriptor for feature matching and pairwise range image registration[ C]//Proceedings of the 2013 20th IEEE Interna- tional Conference on Image Processing. Piscataway: IEEE Press, 2013:2934-2938.
  • 6KIM H, LEE S. A novel line matching method based on intersection context[ C]// Proceedings of the 2010 IEEE International Confer- ence on Robotics and Automation. Piscataway: IEEE Press, 2010: 1014 - 1021.
  • 7YU B, GUO L, ZHAO T, et al. A curve matching algorithm based on Freeman chain code[ C] // Proceedings of the 2010 IEEE Intema-tional Conference on Intelligent Computing and Intelligent Systems. Piscataway: IEEE Press, 2010, 3:669-672.
  • 8OJALA T, PIETIKAINEN M, HARWOOD D. Performance evalua- tion of texture measures With classification based on Kullback dis- crlmination of distributions[ C] // Proceedings of the 12th IAPR In- ternational Conference on Pattern Recognition. Piscataway: IEEE Press, 1994, 1:582-585.
  • 9LOWE D G. Distinctive image features from scale-invariant key- points[ J]. International Journal of Computer Vision, 2004, 60 (2): 91-110.
  • 10BAY H, TUYTELAARS T, Van GOOL L. SURF: speeded up ro- bust features [ C]// Proceedings of the ECCV 2006. Berlin: Spfinger-Verlag, 2006: 404-417.

引证文献4

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部