期刊文献+

基于带间预测的非负支撑域受限递归逆滤波盲复原算法 被引量:1

Improved non-negativity and support constraint recursive inverse filtering algorithm for blind restoration based on interband prediction
在线阅读 下载PDF
导出
摘要 针对非负支撑域受限递归逆滤波(NAS-RIF)算法对噪声敏感和耗时长等缺点,提出了一种改进的NASRIF盲复原算法。首先,为了改进原始NAS-RIF算法的抗噪性能和复原效果,引入了一种新的NAS-RIF算法代价函数;其次,为了提高算法的运算效率,结合Haar小波变换,仅对低频子频带的图像进行NAS-RIF算法复原,而高频子频带的信息,则通过带间预测分别从低频子频带的复原图像中预测得到;最后,为了保证高频信息的准确性,提出了一种基于最小均方误差(MMSE)的带间预测。分别对模拟退化图像和真实图像进行了仿真实验,采用该算法得到的信噪比增益分别为5.221 6 d B和8.103 9 d B。实验结果表明:该算法在保持图像边缘细节的前提下,能够较好地抑制噪声;此外,该算法的运算效率也得到了较大的提高。 To overcome the shortcoming that the Non-negativity And Support constraint Recursive Inverse Filtering( NASRIF) algorithm is noise-sensitive and time-consuming, an improved NAS-RIF algorithm for blind restoration was proposed.Firstly, a new cost function of the NAS-RIF algorithm was introduced, and then the noise resistance ability and the restoration effect were both improved. Secondly, in order to enhance computational efficiency of the algorithm, after decomposed by Haar wavelet transform, only degraded image in low frequency sub-bands was restored with the NAS-RIF algorithm, while information in high frequency sub-bands was predicted from the restored image of low frequency sub-bands by interband prediction. Finally,an interband prediction based on Minimum Mean Square Error( MMSE) was presented to guarantee the accuracy of the predicted information in high frequency sub-bands. The experiments on synthetic degraded images and real images were performed, and the Signal-to-Noise Ratio( SNR) gain by proposed algorithm were 5. 221 6 d B and 8. 103 9 d B respectively. The experimental results demonstrate that the proposed algorithm not only preserves image edges, but also has good performance in noise suppression. In addition, the computational efficiency of the proposed algorithm is greatly enhanced.
机构地区 华侨大学工学院
出处 《计算机应用》 CSCD 北大核心 2015年第4期1075-1078,1096,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(61203242) 华侨大学科研基金资助项目(13BS416) 物联网云计算平台建设项目(2013H2002) 泉州市科技计划项目(2014Z113)
关键词 图像盲复原 非负支撑域受限递归逆滤波算法 HAAR小波变换 带间预测 blind image restoration Non-negativity And Support constraint Recursive Inverse Filtering(NAS-RIF) algorithm Haar wavelet transform interband prediction
  • 相关文献

参考文献16

  • 1温昌礼,徐蓉,门涛,刘长海.基于大气相干长度的湍流模糊图像复原[J].光学学报,2014,34(3):6-13. 被引量:8
  • 2TANG S, GONG W, LI W, et al. Non-blind image deblurring method by local and nonlocal total variation models [ J]. Signal Pro- cessing. 2014, 94(1): 339-349.
  • 3杨亚威,李俊山,张士杰,芦鸿雁,胡双演.基于视觉对比敏感度与恰可察觉失真感知的图像复原[J].光学精密工程,2014,22(2):459-466. 被引量:8
  • 4YIN M, GAO J. TIEN D, et al. Blind image deblurring via coupled sparse representation[J].Journal of Visual Communication and lin- age Representation. 2014, 25(5):814-821.
  • 5DESHPANDE A M. PATNA1K S. A novel modified cepstral based technique for blind estimation of motion blur [ J]. Optik, 2014, 125 (2) :606 -615.
  • 6周箩鱼,张正炳.基于Gauss-Markov随机场的贝叶斯盲复原[J].计算机应用,2014,34(9):2708-2710. 被引量:1
  • 7孟伟,金龙旭,李国宁,傅瑶.调制传递函数在遥感图像复原中的应用[J].红外与激光工程,2014,43(5):1690-1696. 被引量:16
  • 8AYERS G R, DAINTY J C. Iterative blind deconvolution method and its applications [ J]. Optics Letters, 1988, 13(7) : 547 - 549.
  • 9McCALLUM B C. Blind deconvolution by simulated annealing [ J]. Optics Communications. 1990, 75(2) : 101 - 105.
  • 10KUNDUR D , HATZINAKOS D . A novel blind deconvolution scheme for image restoration using reeursive filtering [ J]. IEEE Transactions on Signal Processing, 1998, 46(2): 375 -390.

二级参考文献81

共引文献49

同被引文献16

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部