期刊文献+

视频监控图像的超分辨率复原研究 被引量:8

Research on Super-resolution Surveillance Image Reconstruction
在线阅读 下载PDF
导出
摘要 超分辨率复原技术是一种可用于提高图像细节辨识能力的有效方法。其在视频监控领域可望得到广泛应用。超分辨率图像处理技术通过融合多帧相似的低分辨率图像达到提高图像细节的目的。从而降低对监控视频采集硬件与后端辅助处理系统的要求,提高对特定目标的辨析能力。本文重点介绍了在视频监控领域较为实用的凸集投影算法、最大后验概率估计算法、基于对象的超分辨率复原方法、基于示例学习与多类预测器的超分辨率复原方法。对以上超分辨率复原方法实现流程的优缺点与其在视频图像监控领域的应用方法进行了相应分析。分析了超分辨率视频监控图像复原常用的基于块匹配与光流的对象运动估计方法。对超分辨率复原重建图像质量的评估标准也进行了相应讨论。 Super-resolution image reconstruction is a technique to reconstruct high resolution image or video from a sequence of low resolution images. It has been widely used in video surveillance. SR can reduce cost and complexity of video camera and backend system. Some super resolution algorithms which are commonly used for video monitoring are summarized in this paper. Motion esti-mation, reconstruction standard and future development in super resolution image recovering are discussed too.
出处 《激光杂志》 CAS CSCD 北大核心 2014年第3期5-8,共4页 Laser Journal
关键词 图像处理 超分辨率 视频监控 Image processing Super resolution Video surveillance
  • 相关文献

参考文献48

  • 1张良培,沈焕锋,张洪艳,袁强强.图像超分辨率重建[M].北京:科学出版社.2012.3-11.
  • 2万雪芬,杨义,崔剑.图像超分辨率重建处理算法研究[J].激光与红外,2011,41(11):1278-1281. 被引量:8
  • 3Zhang Liang-pei, Zhang Hong-yan, Shen Huan-feng, Li Pingxiang. A super-resolution reconstruction algorithm for surveillance images [J]. Signal Processing, 2010, 90(3):848-859.
  • 4Venetianer L. P6ter, Deng Hongli. Performance evaluation of an intel- ligent video surveillance system - A case study [J]. Computer Vision and Image Understanding, 2010, 114( 11 ): 1292-1302.
  • 5Lee Kyungroul, Yima Kangbin, Mohammad A. Mikki. A secure framework of the surveillance video network integrating heteroge- neous video formats and protocols [J]. Computers and Mathematics with Applications, 2012, 63(2):525-535.
  • 6Park Sung-cheol, Park Min-kyu, Kang Moon-gi. Super-resolution im- age reconstruction: a technical overview [J]. IEEE Signal Processing Magazine, 2003, 20(3): 21-36.
  • 7Panagiotopoulou Antigoni, Anastassopoulos Vassilis. Super-resolu- tion image reconstruction techniques: Trade-offs between the data-fi- delity and regnlarization terms [J]. Information Fusion, 2012, 13(3): 185-195.
  • 8Helmers Heinz, Schellenberg Markus. CMOS vs. CCD sensors in speckle interferometry [J]. Optics & Laser Technology, 2003,35 (8): 587-595.
  • 9Magnan Pierre. Detection of visible photons in CCD and CMOS: A comparative view [J]. Nuclear Instruments and Methods in Physics Research A, 2003, 504 (1): 199-212.
  • 10Xiao Long-long, Liu Kun, Han Da-peng. CMOS low data rate imag- ing method based on compressed sensing [J]. Optics & Laser Tech- nology, 2012, 44(5): 1338-1345.

二级参考文献32

共引文献21

同被引文献91

  • 1李岩,乔彦峰,高丰端,高岩,孙志远.一种基于运动补偿的时域自适应视频降噪算法[J].电子器件,2007,30(5):1666-1669. 被引量:7
  • 2张晓玲,沈兰荪.超分辨率图像复原技术的研究进展[J].测控技术,2005,24(5):1-5. 被引量:20
  • 3谢盛华,张启衡,宿丁.基于先验信息和正则化技术的图像复原算法的研究[J].量子电子学报,2007,24(4):429-433. 被引量:6
  • 4HUANG T S, TSAI R Y. Multi-frame image restoration and registration [ J ]. Advances in Computer Vision Image Processing, 1984, 1:317 - 339.
  • 5FAN W,SUN J. Local consistency constrained adaptive neighbor embedding for text image super-resolution[ C ]// Proceedings of 10'h IAPR International Workshop on Doc- ument Analysis System ( DAS ), 2012 : 90 - 94.
  • 6PATANAVIJ1T V. Video enhancement using a robust it- erative SRR based on a Geman&McClure stochastic esti- mation with a general observation model[ C ]// Interna- tional Conference on Electrical Engineering/Electronics Computer Telecommunications and Information Technolo- gy ( ECTICON), 2010:875 - 879.
  • 7NASONOV A V, KRYLOV A S. Text images super-reso- lution and enhancement [ C ]// 5'h International Congress on Image and Signal Processing (CISP), 2012:617 - 620.
  • 8KUMAR V, BANSAL A. Sparse document image coding for restoration [ C ]///l 2'h International Conference on Doc- ument Analysis and Recognition (ICDAR), 2013:713 - 717.
  • 9KATHERINE D, GREGORY K M. Bayesian super-reso- lution of text in video with a text-specific bimodal prior [ J ]. International Journal on Document Analysis and Recognition, 2005, 7 : 159 - 167.
  • 10SONG H H, ZHANG D, WANG P K, et al. An adaptive L1-L2 hybrid error model to super-resolution [ C ] // 17th IEEE International Conference on Image Processing, 201fl .2R21 - 2824.

引证文献8

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部