期刊文献+

利用平均影响值和概率神经网络的步态识别 被引量:8

Gait recognition by the mean impact value and probability neural network
在线阅读 下载PDF
导出
摘要 为了实现对智能下肢假肢进行有效控制,下肢步态(包括平地行走、上下楼梯和上下坡等)的有效识别是关键。先从提取不同步态下的特征值入手,利用平均影响值(MIV)来实现变量的筛选,并针对膝上截肢者的特点确定了6个特征值,分别为髋关节角度的最大值、支撑前期均值、支撑中期均值、支撑中期标准差、摆动期标准差(即Mh、ISh、MSh、SWh、MSV、SWV),然后利用概率神经网络(PNN)对本实验系统的5种步态进行准确识别,并与BP神经网络(BPNN)识别步态进行比较,试验结果表明将特征值用平均影响值方法筛选后,用概率神经网络进行步态识别,具有较好的识别率和识别速度,其识别率与BP神经网络相比提高了10%以上,验证了该方法的有效性和可行性。 In order to effectively control the intelligent lower limb prosthesis, the key is to effectively identify the gaits of the lower limb, including walk, up and down stairs or slopes, etc. Firstly, extract characteristic values of different gaits, screen the values with the mean impact value, and identify six feature values in accordance with the characteristics of the knee amputees, including the maximum value of hip joint angle, mean value in Initial Stance, mean value in middle stance, standard deviation in middle stance, standard deviation in swing phase of hip ( Mh, ISh, MSh, SWh, MSV, SWV). Secondly, use the probabilistic neural network (PNN) to recognize them, which can accurately identify the five kinds of gaits in this experiment, and compare with BP neural network. The results show that the method, which uses the means of mean impact value to screen eigenvalues and recognizes gait by probabilistic neural network, has good recognition rate and recognition speed. The recognition rate which compared to BP neural network, increases by more than 10%, thereby verifying the effectiveness and feasibility of this methed.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2015年第2期181-185,共5页 Journal of Harbin Engineering University
基金 国家自然科学基金资助项目(61174009)
关键词 智能假肢 步态识别 平均影响值 概率神经网络 特征筛选 intelligent artificial limb gait recognition mean impact value probabilistic neural network feature selection
  • 相关文献

参考文献17

  • 1PROTOPAPADAKI A, DRECHSLER W I. Hip, knee, an- kle kinematics and kinetics during stair ascent and descent in healthy young individuals[ J ]. Clinical Biomechanics, 2007, 22 : 203-210.
  • 2张今瑜,王岚,张立勋.基于多传感器的实时步态检测研究[J].哈尔滨工程大学学报,2007,28(2):218-221. 被引量:16
  • 3MATOVSKI D S, NIXON M S, MAHMOODI S, et al. The effect of time on gait recognition performance [ J ]. Informa- tion Forensics and Security, 2012, 7(2) : 543-552.
  • 4ZENG Wei, WANG Cong. Human gait recognition via deter- ministic learning[J]. Neural Network, 2012, 35: 92-102.
  • 5CHEN Lingling, YANG Peng, XU Xiaoyun, et al. Above-knee prosthesis control based on posture recognition by sup- port vector machine [ C ]//2008 IEEE International Confer- ence on Robotics, Automation and Mechatronics. Chengdu, China, 2008: 307-312.
  • 6高云园,佘青山,孟明,罗志增.基于多源信息融合的膝上假肢步态识别方法[J].仪器仪表学报,2010,31(12):2682-2688. 被引量:18
  • 7耿艳利,杨鹏,刘作军,陈玲玲.大腿截肢者步速识别系统设计[J].中国康复医学杂志,2012,27(7):651-653. 被引量:4
  • 8SAEID F, HADIS A, SHEIKH S M. Multi-view neural net- work based gait recognition [ C ]//World Academy of Sci- ence, Engineering and Technology. Istanbul, Turkey, 2010: 705 -709.
  • 9NEDA K, SAEID R. Gait recognition for human identifica- tion using ensemble of LVQ neural networks[ C ]//2012 In- ternational Conference on Biomedical Engineering. Penang, Malaysia, 2012: 180-185.
  • 10SU F C, WU W L. Design and testing of a genetic algorithm neural network in the assessment of gait patterns [ J ]. Medi- cal Engineering and Physics, 2000, 22( 1 ) : 67-74.

二级参考文献51

  • 1苏开娜,刘玉栋,马丽.身份识别中步态特征的提取[J].北京工业大学学报,2005,31(4):388-393. 被引量:5
  • 2郭忠武,丁海曙,王广志,丁辉.基于运动学和动力学参数的步态识别研究[J].生物医学工程学杂志,2005,22(1):1-4. 被引量:7
  • 3金德闻,杨建坤,张瑞红,王人成,张济川.Terrain Identification for Prosthetic Knees Based on Electromyographic Signal Features[J].Tsinghua Science and Technology,2006,11(1):74-79. 被引量:5
  • 4鲁继文,张二虎,薛延学.基于独立成分分析和信息融合的步态识别[J].模式识别与人工智能,2007,20(3):365-370. 被引量:6
  • 5Cunado D, Nixion M S, Carter J N. Automatic gait recognition via model-based evidence gathering [ A ]. In: Proceedings of IEEE Workshop on Automated Identification Advanced Technologies [ C ], Summit, New Jersey, USA, 1999:27-30.
  • 6Lee Lily. Gait Analysis for Classification [ R ]. AI Technical Report 2003-014 ,Cambridge,Massachusetts, USA : Massachusetts Institute of Technology, 2003.
  • 7Wang Liang, Tan Tie-niu. Automatic gait recognition based on statistical shape analysis [ J ]. IEEE Transactions on Image Processing, 2003, 12(9) : 1120-1131.
  • 8Wang Liang, Tan Tie-niu, Ning Hua-zhong. Silhouette analysis based gait recognition for human identification [ J ] . IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(12) : 1505-1518.
  • 9Shutler J, Nixon M, Harris C. Statistical gait recognition via temporal moments[ A]. In: Proceedings of IEEE Southwest Symposium on Image Analysis and Interpretatioh [ C ], Austin, Texas, USA, 2000 : 291-295.
  • 10Cunado D, Nixon M S, Carter J N. Automatic extraction and description of human gait models for recognition purposes [ J ]. Computer Vision and Image Understanding, 2003, 90( 1 ) : 1-41.

共引文献60

同被引文献93

引证文献8

二级引证文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部