期刊文献+

基于特征选择的模糊聚类异常入侵行为检测 被引量:47

Anomaly Intrusion Behavior Detection Based on Fuzzy Clustering and Features Selection
在线阅读 下载PDF
导出
摘要 网络攻击连接具有行为的多变性和复杂性等特征,利用基于传统聚类的行为挖掘技术来构建异常入侵检测模型是不可行的.针对网络攻击行为的特点,提出了基于特征选择的模糊聚类异常入侵模型.首先通过层次聚类算法改善了FCM聚类算法结果对初始聚类中心的敏感性,再利用遗传算法的全局搜索能力克服了其在迭代时易陷入局部最优的缺点,并将它们结合构成一种AGFCM算法;然后采用信息增益算法对网络攻击连接数据集的特征属性进行排序,同时利用约登指数来删减数据集的特征属性以确定特征属性容量;最后利用低维特征属性集和改进的FCM聚类算法构建了异常入侵检测模型.实验结果表明该模型对绝大多数的网络攻击类型具有很好的检测能力,为解决异常入侵检测模型的误警率和检测率等问题提供了一种可行的解决途径. The behaviors of network attack connection are always changeable and complex.Typical behavior mining methods,which always do using traditional clustering,do not fit in with constructing anomaly intrusion detection model.According to the characteristics of network attacks,the anomaly intrusion detection model based on fuzzy clustering and features selection are proposed.Firstly,the results that the fuzzy C-means clustering algorithm is sensitive to the initial cluster centers is improved using hierarchical clustering algorithm,the disadvantage that FCM is easy to fall into local optimum in the iteration is overcome using the global search ability of genetic algorithm,and they are combined into a AGFCM algorithm.Secondly,the feature attribute data sets of network attack connection are sorted through the information gain algorithm.The capacity of feature attributes is determined by using the Youden index to cut the data sets at the same time.Lastly,the anomaly intrusion detection model is built by using the attribute data sets dimensionality reduction and improved FCM clustering algorithm.Experimental results show that the anomaly intrusion detection model can effectively detect the vast majority of network attack types,which provides a feasible solution for solving the problems of false alarm rate and detection rate in anomaly intrusion detection model.
出处 《计算机研究与发展》 EI CSCD 北大核心 2015年第3期718-728,共11页 Journal of Computer Research and Development
基金 国家自然科学基金项目(61163057 60970146 61462020) 广西可信软件重点实验室基金项目(kx201111) 广西信息科学实验中心基金项目(20130329) 广西自然科学基金项目(2014GXNSFAA118375)
关键词 模糊聚类 层次聚类 特征选择 模糊C均值 异常检测 fuzzy clustering hierarchical clustering features selection fuzzy C-means anomaly detection
  • 相关文献

参考文献27

  • 1Lee W, Stolfo S J. Data mining approaches for intrusion detection [C] //Proc of the 7th USENIX Security Symposium. Berkeley, GA USENIX Association, 1998: 79-93.
  • 2李超,田新广,肖喜,段洣毅.基于Shell命令和共生矩阵的用户行为异常检测方法[J].计算机研究与发展,2012,49(9):1982-1990. 被引量:10
  • 3Denatious D K, John A. Survey on data mining techniques to enhance intrusion detection [C] //Proc of the 2012 Int Conf on Computer Communication and Informatics. Piscataway, NJ IEEE, 2012:1-5.
  • 4Chitrakar R, Huang Chuanhe. Anomaly detection using support vector machine classification with K-medoids clustering [C] //Proe of the 3rd Asian Himalayas Int Conf on Internet. Piscataway, NJ.. IEEE, 2012..1-5.
  • 5Srinoy S, Kurutach W, Chimphlee W, et al. Intrusion detection via independent component analysis based on rough fuzzy [J]. WSEAS Trans on Computers, 2006, 5(1) :43-48.
  • 6Rose K, Gurewitz E, Fox G C. Constrained clustering as optimization method [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1993, /5(8): 785-794.
  • 7张新波.两阶段模糊C-均值聚类算法[J].电路与系统学报,2005,10(2):117-120. 被引量:21
  • 8Berget I, Mevik B H. New modifications and applications of fuzzy C-means methodology [J]. Computational Statistics and Data Analysis, 2008, 52(5) 2403-2418.
  • 9王纵虎,刘志镜,陈东辉.基于粒子群优化的模糊C-均值聚类算法研究[J].计算机科学,2012,39(9):166-169. 被引量:23
  • 10陈友,程学旗,李洋,戴磊.基于特征选择的轻量级入侵检测系统[J].软件学报,2007,18(7):1639-1651. 被引量:78

二级参考文献68

共引文献228

同被引文献471

引证文献47

二级引证文献402

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部