期刊文献+

基于划分的模糊聚类算法 被引量:176

Fuzzy Partitional Clustering Algorithms
在线阅读 下载PDF
导出
摘要 在众多聚类算法中,基于划分的模糊聚类算法是模式识别中最常用的算法类型之一.至今,文献中仍不断有关于基于划分的模糊聚类算法的研究成果出现.为了能更为系统和深入地了解这些聚类算法及其性质,本文从改变度量方式、改变约束条件、在目标函数中引入熵以及考虑对聚类中心进行约束等几个方面,对在C-均值算法的基础上得到的基于划分的模糊聚类算法作了综述和评价,对各典型算法的优缺点进行了实验比较分析.指出标准FCM算法被广泛应用的原因之一是它对数据的比例变化具有鲁棒性,而其他类似的算法对这种比例变化却很敏感,并以极大熵方法为例进行了比较实验.最后总结了基于划分的模糊聚类算法普遍存在的问题及其发展前景. Fuzzy partitional clustering algorithms are widely used in pattern recognition field. Until now, more and more research results on them have been developed in the literature. In order to study these algorithms systematically and deeply, they are reviewed in this paper based on c-means algorithm, from metrics, entropy, and constraints on membership function or cluster centers. Moreover, the advantages and disadvantages of the typical fuzzy partitional algorithms are discussed. It is pointed out that the standard FCM algorithm is robust to the scaling transformation of dataset, while others are sensitive to such transformation. Such conclusion is experimentally verified when implementing the standard FCM and the maximum entropy clustering algorithm. Finally, the problems existing in these algorithms and the prospects of the fuzzy partitional algorithms are discussed.
作者 张敏 于剑
出处 《软件学报》 EI CSCD 北大核心 2004年第6期858-868,共11页 Journal of Software
基金 国家自然科学基金 教育部科学技术研究重点项目~~
关键词 划分聚类 C均值 权重指数 隶属度函数 partitional clustering C-means weighting exponent entropy membership function
  • 相关文献

参考文献4

二级参考文献50

  • 1于剑.模糊指标与模糊C均值算法 [A]..第二届中国ROUGH集与软计算学术研讨会大会邀请论文 [C].中国,.P 135.
  • 2[1]Rose, K., Gurewtiz, E., Fox, G., A deterministic annealing approach to clustering, Pattern Recognition Letters, 1990, 11: 589-594.
  • 3[2]Karayiannis, N. B., MECA: Maximum entropy clustering algorithm, in Proc. IEEE Int. Conf. Fuzzy Syst., Orlando, FL, June 26-29, 1994, 630-635.
  • 4[3]Li, R._P., Mukaidono, M., A maximum entropy approach to fuzzy clustering, Proc. of the 4th IEEE Intern. Conf. on Fuzzy Systems, Yokohama, Japan, March 20-24, 1995, 2227-2232.
  • 5[4]Karayiannis, N. B., Fuzzy partition entropies and entropy constrained fuzzy clustering algorithms, J. Intell. Fuzzy Syst., 1997, 5(2): 103-111.
  • 6[5]Miyamoto, S., Mukaidono, M., Fuzzy c-means as a regularization and maximum entropy approach, Proc. of the 7th International Fuzzy Systems Association World Congress, Vol. II, June 25-30, Prague, Chech, 1997, 86-92.
  • 7[6]Karayiannis, N. B., An axiomatic approach to soft learning vector quantization and clustering, IEEE Trans. on Neural Networks, 1999, 10(5): 1153-1165.
  • 8[7]Miyamoto, S., Umayahara, K., Two methods of fuzzy c-means and classification functions, Proc. of 6th Conf. of the International Federation of Classification Societies, July 21-24, Roma, Italy, 1998, 105-110.
  • 9[8]Zhang Zhihua, Zheng Nanning, Shi Gang, Maximum-entropy clustering algorithm and its global convergence analysis, Science in China, Ser. E, 2001, 44(1): 89-101.
  • 10[9]Rose, K., Deterministic annealing for clustering, compression, classification, regression, and related optimization problems, Proceedings of the IEEE, 1998, 86(11): 2210-2239.

共引文献219

同被引文献1613

引证文献176

二级引证文献1153

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部