期刊文献+

基于模糊聚类理论的TBM施工围岩可掘进性分级预测模型 被引量:12

Fuzzy Clustering Theory Based Rock Mass Cuttability Classification Prediction Model for TBM Tunnelling
在线阅读 下载PDF
导出
摘要 文章针对硬岩掘进机(TBM)在复杂地质条件下的可掘进性,进行了系统及定量的研究;基于模糊聚类理论和施工样本数据分析,建立了以掘进速率为分级指标,包括岩石单轴抗压强度、岩石完整性系数、围岩结构面与隧道轴线夹角和渗水量四项性质指标的可掘进性分级预测模型,将TBM施工围岩可掘进性分为好、一般和差三个性能等级;并在此基础上进一步细化模型粒度,以提高模型的精度和地质适用性。将所建模型应用于西秦岭隧道和大伙房水库输水隧洞工程实际工程效果表明,TBM掘进速率与由模型预测的掘进速率基本相吻合,验证了掘进性分级预测模型的可行性、科学性和有效性,进而对TBM的选型、设计和施工提供了重要的理论依据。 In this paper, systematic and quantitative studies are carried out regarding rock cuttability by a TBM under complex geological conditions. Based on the fuzzy clustering theory and construction sample analysis, a rock cuttability classification prediction model is established by using the rate of penetration (ROP) as a basic index. The ROP is related to four property indexes: rock uniaxial compressive strength, rock integrity coefficient, the angle between the rock structural plane and the tunnel axis, and water seepage. In the prediction model, the rock mass cuttability is classified into three levels: good, moderate, and poor. Furthermore the prediction model is refined to improve model precision and geological applicability. According to the prediction results for the West Qinling tunnel and the Dahuofang water conveyance tunnel projects, the ROP of the TBM basically agrees with that of the prediction model, proving the feasibility, scientific soundness, and availability of the rock cuttability classification prediction model and providing a basis for the selection, design, and construction of the TBM.
出处 《现代隧道技术》 EI 北大核心 2014年第6期58-65,共8页 Modern Tunnelling Technology
基金 国家重点基础研究发展计划(973计划)资助项目(2013CB035402) 天津市产学研合作示范项目(2012GKF-0606)
关键词 硬岩掘进机 样本数据 模糊聚类理论 围岩分级 TBM Sample data Fuzzy clustering theory Classification of surrounding rock cuttability
  • 相关文献

参考文献16

二级参考文献62

共引文献412

同被引文献141

引证文献12

二级引证文献110

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部