期刊文献+

融合多特征与格式塔理论的路面裂缝检测 被引量:18

Integrating Multi-Features Fusion and Gestalt Principles for Pavement Crack Detection
在线阅读 下载PDF
导出
摘要 路面裂缝常常混杂着随机的路面颗粒纹理和自然环境下的多种干扰,基于单一特征的检测方法无法较为准确地提取裂缝,为此提出一种多特征融合与格式塔理论相结合的路面裂缝检测算法.将多尺度局部区域中裂缝的灰度差异、出现概率以及边缘特性作为低层显著特征,根据裂缝纹理的不均匀性,结合裂缝不规则曲线结构的空间延续性,提出一种新的纹理各向异性度量方式(LFIA),以高效削弱噪声点与伪裂缝的干扰;然后引入格式塔理论中的相似性、接近性和完整性原则,采用迭代剪裁预分割LFIA图,基于区域内部以及区域间连接度的裂缝空间一致性增强策略,突出裂缝.在收集的各类裂缝图像数据库上的实验结果表明,该算法抗噪性能好、鲁棒性强;裂缝提取的准确性、完整性要优于已有的算法. Pavement cracks are often mixed with random particle textures on road surface and a variety ofinterference under natural environment, results in the crack detection method based on single feature cannotrecognize real crack accurately. Therefore, this paper presents a novel pavement crack detection methodthrough integrating multi-features fusion and Gestalt principles. It extracts the intensity differences, theprobability of occurrence and edge property of cracks in multi-scale local regions as low-level salient featuresfirstly. Then, according to the texture inhomogeneity and the spatial continuity of the irregular curvilinearstructures of cracks, a novel texture anisotropy measure method (LFIA) is presented, which canweaken the disturbance of noisy points and pseudo-crack fragments efficiently. Based on the similarity,proximity and integrity principles of Gestalt theory, this paper adopts iterative clipping method topre-segment LFIA map and proposes a crack spatial consistency enhancement strategy based on intra-regional and inter-regional connectivity to extract cracks. The experimental results of various collectedpavement crack image database show the outstanding anti-noise performance and robustness. The precisionand recall of our method is significantly superior to several existing conventional algorithms.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2015年第1期147-156,共10页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金重点项目(90820306)
关键词 裂缝检测 多尺度低层特征 纹理不均匀性 纹理各向异性 格式塔理论 crack detection multi-scale low-level features texture inhomogeneity texture anisotropy Gestaltprinciples
  • 相关文献

参考文献21

  • 1Chambon S, Moliard J M. Automatic road pavement assessmentwith image processing: review and comparison [J]. InternationalJournal of Geophysics, 2011, 2011: Article ID 989354.
  • 2Chou J, O’Neill W A, Cheng H. Pavement distress evaluationusing fuzzy logic and moments invariants [J]. TransportationResearch Record, 1995, 1505: 39-46.
  • 3Oliveria H, Correia P L. Automatic road crack detection andcharacterization [J]. IEEE Transactions on Intelligent TransportationSystems, 2013, 14(1): 155-168.
  • 4Oh H, Garrick N W, Achenie L E K. Segmentation algorithmusing iterated clipping for processing noisy pavement images[C] // Proceedings of the 2nd International Conference on ImagingTechnologies: Techniques and Applications in Civil Engineering.Reston: ASCE Press, 1998: 138-147.
  • 5Chambon S, Subirats P, Dumoulin J. Introduction of a wavelettransform based on 2D matched filter in a Markov random fieldfor fine structure extraction: application on road crack detection[C]// Proceedings of SPIE. Bellingham: Society of Photo-OpticalInstrumentation Engineers Press, 2009, 7251: 72510A-1-72510A-12.
  • 6Li Q Q, Liu X L. Novel approach to pavement image segmentationbased on neighboring difference histogram method [C]// Proceedingsof International Congress on Image and Signal Processing.Los Alamitos: IEEE Computer Society Press, 2008: 792-796.
  • 7Liu F F, Xu G A, Yang Y X, et al. Novel approach to pavementcracking automatic detection based on segment extending [C]//Proceedings of International Symposium on Knowledge Acquisitionand Modeling. Los Alamitos: IEEE Computer SocietyPress, 2008: 610-614.
  • 8Zou Q, Cao Y, Li Q Q, et al. CrackTree: automatic crack detectionfrom pavement images [J]. Pattern Recongnition Letters,2012, 33(3): 227-238.
  • 9Zhou J, Huang P S, Chiang F P. Wavelet-based pavement distress detection and evaluation [J]. Optical Engineering, 2006,45(2): 027007.1-027007.10.
  • 10马常霞,赵春霞,胡勇,王鸿南,陈海燕.结合NSCT和图像形态学的路面裂缝检测[J].计算机辅助设计与图形学学报,2009,21(12):1761-1767. 被引量:45

二级参考文献34

  • 1焦李成,谭山.图像的多尺度几何分析:回顾和展望[J].电子学报,2003,31(z1):1975-1981. 被引量:227
  • 2高建贞,陆建峰,赵春霞,唐振民,杨静宇.基于多级拟合的道路病害自动检测与识别[J].计算机工程与应用,2004,40(22):220-223. 被引量:5
  • 3张洪光,王祁,魏玮.基于人工种群的路面裂纹检测[J].南京理工大学学报,2005,29(4):389-393. 被引量:10
  • 4王刚,贺安之,肖亮.基于高速公路裂纹局部线性特征内容的脊波变换域算法研究[J].光学学报,2006,26(3):341-346. 被引量:11
  • 5Pynn J, Wright A, Lodge R. Automatic identification of cracks in road surfaces [C] //Proceedings of the 7th IEEE International Conference on Image Processing and its Applications, Manchester, 1999:671-675.
  • 6Bray J, Verma B, Li X, et al. A neural network based technique for automatic classification of road cracks [C] // Proceedings of International Joint Conference on Neural Networks, Vancouver, 2006:907-912.
  • 7Burt P J, Adelson E H. The Laplacian pyramid as a compact image code [J]. IEEE Transactions on Communications, 1983, 31(4): 532-540.
  • 8Do M N, Vetterli M. The contourlet transform: an efficient directional multiresolution image representation [J]. IEEE Transactions on Image Processing, 2005, 14 (12) : 2091- 2106.
  • 9da Cunha A I., Zhou J P, Do M N. The nonsubsampled contourlet transform., theory, design, and applications [J]. IEEE Transactions on Image Processing, 2006, 15 (10) : 3089-3101.
  • 10Chang S G, Yu B, Vetterli M. Adaptive wavelet thresholding for image denoising and compression[J]. IEEE Transactions on Image Processing, 2000, 9(9): 1532-1546.

共引文献81

同被引文献173

引证文献18

二级引证文献159

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部