期刊文献+

基于视觉的零部件振动裂纹在线监测系统研究 被引量:4

Online vibration crack detection algorithm based on computer vision
在线阅读 下载PDF
导出
摘要 金属零部件的质量检测是劳动密集型工作,一般通过疲劳测试评价金属零部件质量,对金属零部件质量进行准确评估的依据,能够指导设计合理的机械结构并有效减少安全事故和经济损失。为了快速筛选质量合格、抗振性较强的金属零部件,针对疲劳测试中快速振动的金属零部件,提出了一种基于计算机视觉的振动疲劳裂纹在线检测算法。该算法首先基于前后帧对齐方法消除振动产生的位移和运动模糊,然后利用帧间差法检测零部件表面变化,最后根据裂纹的纹理特征和几何特征通过分割算法得到裂纹形态和长度参数。实验结果表明,与静态条件下的裂纹检测算法相比,提出算法能够在振动台不停机的情况下,自动地获取零部件裂纹的位置、长度及形状等信息,记录裂纹的延展过程,可以大大提高振动裂纹检测的工作效率。 The quality inspection of metal parts is a labor-intensive work.Generally,fatigue test is used to evaluate the quality of metal parts and the basis for accurate evaluation of the quality of metal parts,which can guide the design of reasonable mechanical structure and effectively reduce safety accidents and economic losses.In order to quickly screen qualified metal parts with strong vibration resistance,an online detection algorithm of vibration fatigue crack based on computer vision is proposed for metal parts with rapid vibration in fatigue test.Firstly,the displacement and motion blur caused by vibration are eliminated based on the front and rear frame alignment method,and then the surface changes of parts are detected by the inter frame difference method.Finally,the crack shape and length parameters are obtained by the segmentation algorithm according to the texture and geometric characteristics of the crack.The experimental results show that compared with the crack detection algorithm under static conditions,the proposed algorithm can automatically obtain the location,length and shape of parts’cracks without stopping the shaking table,and record the crack propagation process,which can greatly improve the work efficiency of vibration crack detection.
作者 丁伟利 任天赐 谭伟敏 王文锋 Ding Weili;Ren Tianci;Tan Weimin;Wang Wenfeng(Yanshan University,Qinhuangdao 066004,China)
机构地区 燕山大学
出处 《电子测量与仪器学报》 CSCD 北大核心 2022年第2期78-88,共11页 Journal of Electronic Measurement and Instrumentation
基金 国家重点研发计划项目(2018YFB1308300)资助
关键词 裂纹检测 疲劳裂纹 振动台 计算机视觉 在线监测 crack detection fatigue crack vibration table computer vision online monitoring
  • 相关文献

参考文献6

二级参考文献55

  • 1刘涛,李颖,栾培峰,高怡斐.柔度法测定高温疲劳裂纹扩展速率da/dN的研究[J].冶金分析,2004,24(z2):493-495. 被引量:1
  • 2高建贞,陆建峰,赵春霞,唐振民,杨静宇.基于多级拟合的道路病害自动检测与识别[J].计算机工程与应用,2004,40(22):220-223. 被引量:5
  • 3张洪光,王祁,魏玮.基于人工种群的路面裂纹检测[J].南京理工大学学报,2005,29(4):389-393. 被引量:10
  • 4王刚,贺安之,肖亮.基于高速公路裂纹局部线性特征内容的脊波变换域算法研究[J].光学学报,2006,26(3):341-346. 被引量:11
  • 5Cheng H D, Miyojim M. Automatic pavement distress detection system [ J ]. Journal of Information Sciences, 1998, 108 ( 1 ) : 219 -240.
  • 6Kirschke K R, Velinsky S. A histogram-based approach for auto- mated pavement-cracks sensing [ J ]. Journal of Transportation Engineering, 1992, 119(3 ) : 700-710.
  • 7Egemen T, Vimn R A, Halil C, et al. Digital image processing for pavement distress analyses [ C ]//The 2005 Mid-Continent Transportation Research Symposium. Ames, Iowa, USA: Iowa State University, 2005 : 1-13.
  • 8Li Q Q, Liu X L. A model for segmentation and distress statistic of massive pavement image based on muli-sacle strategies [ J ]. The International Archives of the Photogrammetry, Remote Sens- ing and Spatial information Sciences, 2008, 37( B5 ) : 63-68.
  • 9Bahram J, Jack S, Sherif K, et al. Pilot for automated detection and classification of road surface degradation features, JHR 03- 293 [ R]. Connecticut, USA: Connecticut Transportation Institu- te, 2003.
  • 10Chang H D, Chen J R, Chris G, et al. Novel approach to pave- ment cracking detection based on fuzzy set theory[ J]. Journal of Computing in Civil Engineering, 1999, 13(4) : 270-280.

共引文献70

同被引文献53

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部