期刊文献+

因果关系及其在社会媒体上的应用研究综述 被引量:15

Causality and Its Applications in Social Media:A Survey
在线阅读 下载PDF
导出
摘要 诸如物理学、行为学、社会学和生物学中许多研究的中心问题是对因果的阐述,即变量或事件之间直接作用关系的阐述.由于人们的日常行为和语言越来越多地映射到互联网上,或者根本就是互联网引起了大量新的行为和语言,致使社会媒体上存在大量的因果问题.与相关关系分析相比,社会媒体上的因果关系分析更加必要和迫切,首先,任何相关性的背后都隐藏着因果关系;其次,相关性分析得到的结论有时是不可靠的甚至是错误的;再次,基于相关性的方法无法用于管理、控制和干预变量或事件.论述了因果关系分析的必要性、重要性和社会媒体上存在的因果问题;综述了目前的因果分析与推断的基本理论、存在的问题和研究现状;通过比较现有因果关系分析的研究思路,预测未来的研究方向和因果分析理论及方法在社会媒体上的应用. The main objective of many studies in the physical, behavioral, social, and biological sciences is the elucidation of cause-effect relationships among variables or events. Many causality problems, occur when new words and behaviors are mapped from individuals to the Internet or are created by the Internetitself. Causality is hidden behind correlations; conclusion made by correlation analysis is likely to be unreliable or even wrong; and in absence of causality, methods based on correlation is unable to intervene, control and manage. Thus, causal analysis is necessary in social media. This paper first introduces the value, importance, and necessity of causality analysis, followed by causality problems existing in social media. Then, a brief overview of the recent research on causal inference is provided with analysis basic theory, problems and research status. Finally, comparisons among previous studies are made to suggest the future research directions and causality application in social media.
作者 赵森栋 刘挺
出处 《软件学报》 EI CSCD 北大核心 2014年第12期2733-2752,共20页 Journal of Software
基金 国家自然科学基金(61133012) 国家重点基础研究发展计划(973)(2014CB340503) 国家青年科学基金(61202277)
关键词 因果关系 社会媒体 常识因果 贝叶斯网络 随机对照实验 准实验设计 causality social media commonsense causality Bayesian network randomized controlled trial quasi-experimental design
  • 相关文献

参考文献3

二级参考文献51

  • 1费胜巍,孙宇,师会超.基于故障分析模型的贝叶斯网络构建及应用[J].计算机集成制造系统,2007,13(9):1768-1773. 被引量:9
  • 2Daly R, Shen Q, Aitken S. Learning Bayesian Networks: Approa?ches and Issues. Knowledge Engineering Review, 2011, 26 ( 2 ) : 99-157.
  • 3PearlJ. Probabilistic Reasoning in Intelligent Systems: Networksof Plausible Inference. San Francisco, USA: Morgan Kaufmann, 1988.
  • 4Dagum P, Luby M. Approximating Probabilistic Inference in Baye?sian Belief Networks is NP-Hard. Artificial Intelligence, 1993, 60 (1): 141...:153.
  • 5Takaishi T. Bayesian Inference of Stochastic Volatility Model by Hy?brid Monte Carlo.Journal of Circuits, Systems and Computers, 2009,18(8): 1381-1396.
  • 6Draper D. Clustering without (Thinking about) Triangulation II Proc of the 11 th Conference on Uncertainty in Artificial Intelligence. Montreal, Canada, 1995: 378-385.
  • 7Tsamardinos I, Aliferis C F. Towards Principled Feature Selection: Relevancy, Filters and Wrappers[EB/OLJ.[2012 - 05 - 01J. http://research. microsoft. coml enus/uml cambridgel eventsl aistats 2003/proceedings/133. pdf.
  • 8Jin K H, Wu Dan, Wu Libing. On Designing Approximate Infer?ence Algorithms for Multiply Sectioned Bayesian Networks II Proc of the IEEE International Conference on Granular Computing. Nan?chang, China, 2009: 294 - 299.
  • 9Neal R M. Probabilistic Inference Using Markov Chain Monte Carlo Methods[EB/OLJ.[2012-05-01J. http://www. cs. toronto. edu/ publ radfordl review. pdf.
  • 10Yu Binbing. A Bayesian MCMC Approach to Survival Analysis with Doubly-Censored Data. Computational Statistics and Data Analy?sis, 2010, 54(8): 1921-1929.

共引文献29

同被引文献110

引证文献15

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部