期刊文献+

机械故障诊断的衍生增强离散解析小波分析框架 被引量:10

Novel Ensemble Analytic Discrete Framelet Expansion for Machinery Fault Diagnosis
在线阅读 下载PDF
导出
摘要 小波变换被称为"数学显微镜",它对机械信号的多尺度分析在机械设备状态监测和故障诊断领域发挥着重要的作用。然而传统二进小波变换在工程应用中存在一些显著的不足,如平移敏感性、小波尺度能量泄漏、固定的二进"频率?尺度"划分网格等。尤其是后者使得经典小波变换对处于二进网格过渡带的特征分析中产生不可避免的"盲区"。基于此,提出一种基于过完备小波紧框架的新式"时间-尺度"分析方法-衍生增强离散解析小波分析框架。该小波分析框架基于双树复小波变换进行构造,通过合理地选择双树复小波基函数,并将之应用于增广树形迭代滤波器组中生成近似解析小波包变换,通过对近似解析小波包变换的分析结果进行子空间重排和小波包尺度空间交叉结合,构造伪二进小波包隐框架。在多尺度分解的意义下,所提出的衍生增强离散解析小波分析框架(近似解析小波框架和伪二进小波包隐框架)很好地改进了经典小波存在时频表达能力方面的限制,有效地移动了小波尺度的中心频率,实现了自顶向下、多中心连续细化的"频率-尺度"分析网格。将之应用于的带钢精轧机的微弱故障特征提取中,验证了所提出方法对于经典小波分析方法的优越性。 As the celebrated "mathematical scope", the multi-resolution analyzing capacity of wavelet transform (WT) plays an important role in condition monitoring and fault diagnosis of mechanical equipment. However, it has proven that the effectiveness of WT is hampered by several negative factors, such as shift-sensitiveness, significant energy leakage, and the fixed dyadic "frequency-sale" paving. Especially, the dyadic "frequency-sale" paving creates inevitable deficiency in identifying mechanical signatures located in transition areas of adjacent wavelet scales. A novel "time-sale" analysis methodology, named as derived ensemble analytic framelet (DEAF), based on overcomplete wavelet tight frame, is proposed. The DEAF is developed based on the existing dual tree complex wavelet transform (DTCWT). The DEAF starts from a selected DTCWT basis, and combines it with a hybrid augmented tree-structured filter-bank, which results in quasi analytic wavelet packet decomposition (QAWPD). With the results of QAWPT, an ensemble wavelet packet generating strategy is applied such that an unprecedented implicit wavelet packet tight frame (IWPTF) containing pseudo dyadic wavelet packets is obtained. With the combination of QAWPD and IWPTF, the proposed DEAF can be derived which possesses the "frequency-sale" paving characterized by continued time-frequency refinement of analysis centers. The proposed technique is applied to the mechanical signature analysis of an engineering application to validate its superiority compared with the existing methods.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2014年第17期77-86,共10页 Journal of Mechanical Engineering
基金 国家自然科学基金(51275382) 国家科技重大专项(2010ZX04014-016 2011ZX04003-021)资助项目
关键词 机械故障诊断 双树复小波变换 解析小波框架 增广树形滤波器组 平移不变性 mechanical fault diagnosis dual-tree complex wavelet transform analytic framelet expansion augmented tree-structured filter-bank translation invariance
  • 相关文献

参考文献3

二级参考文献31

  • 1YUAN Jing,HE ZhengJia,ZI YanYang,LIU Han.Gearbox fault diagnosis of rolling mills using multiwavelet sliding window neighboring coefficient denoising and optimal blind deconvolution[J].Science China(Technological Sciences),2009,52(10):2801-2809. 被引量:7
  • 2PEND Z K,JACKSON R R,CHU F L,et al. On the energy leakage of discrete wavelet transform[J]. Mechanical Systems and Signal Processing,2009,23: 330-343.
  • 3BAO Wen,ZHOU Rui,YANG Jianguo,et al. Anti-aliasing lifting scheme for mechanical vibration fault feature extraction[J]. Mechanical Systems and Signal Processing,2009,23(5):1458-1473.
  • 4SELESNICK I W,BARANIUK R G,KINGBURY N G. The dual tree complex wavelet transform[J]. IEEE Signal Processing Magzine,2005,22(6):123-151.
  • 5KOVACEVIC J,CHEBIRA A. Life beyond bases:The advent of frames(Part I)[J]. IEEE Signal Processing Magzine,2007,24(4):86-104.
  • 6KINGSBURY N. Complex wavelets and shift invariance[C]// Proc. IEE Colloquium on Time-Scale and Time-Frequency Analysis and Applications,Feb. 29, 2000,UK London. Stevenage:IET,2000:57-66.
  • 7SELESNICK I W,ABDELNOUR A F. Symmetric wavelet tight frames with two generators[J]. Applied and Computational Harmonic Analysis,2004,17(2): 211-225.
  • 8QIN Yi,TANG Baoping,WANG Jiaxu. Higher-density dyadic wavelet transform and its application[J]. Mechanical Systems and Signal Processing,2004, 24(3):823-834.
  • 9SELESNICK I W. The double-density dual-tree DWT[J]. IEEE Trans. on Sig. Proc.,2004,52(5):1304-1314.
  • 10BUI T D,CHEN G Y. Translation-invariant de-noising using multiwavelets[J]. IEEE Transaction on Signal Processing,1998,46(12):414-420.

共引文献45

同被引文献87

引证文献10

二级引证文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部