期刊文献+

双树复小波时频构造在齿轮系装配间隙检测的应用 被引量:9

Time-Frequency Domain Construction of Dual Tree Complex Wavelets for Assembly Clearance Detection of Gear Chains
在线阅读 下载PDF
导出
摘要 为优化离散小波变换在机械设备非平稳周期性故障特征提取的时频局部化能力,研究了一种时频域的双树复小波构造方法。通过调整复尺度函数滤波器的频率响应函数,获得初始滤波器的冲击响应向量,然后从时域上利用迭代优化算法增强构造结果的正交性,来进一步抑制能量泄漏,从而可在零消失矩下保证构造结果的正则性。数值仿真表明,时频域构造方法具有低能量泄漏的特性,在重型车床主轴箱齿轮系的振动信号应用中,可有效地提取由滑移齿轮装配间隙引起的微弱周期性调制特征,提取效果明显优于经典Daubechies规范正交小波,以及纯粹时域构造的双树复小波。 To optimize the time-frequency localizability of discrete wavelet transform in extracting nonstationary and periodic fault signatures of mechanical equipment, a time-frequency domain constructing scheme of dual tree complex wavelet transform (DTCWT) is investigated. Frequency responses with imposed phase shift condition and reduced energy leakage are designed for the prototype filters of scaling functions in the frequency domain. Subsequently, in the time domain the orthogonality and the energy leakage of the constructed DTCWT are further addressed. The regularity of the constructed DTCWT can be guaranteed even at zero vanishing moment. The reduced energy leakage effect of the constructing method is validated via numerical simulations. The constructed DTCWT is utilized to analyze the vibration signal of the gear train of a heavy-duty lathe and to successfully extract the weak periodic modulation signatures induced by the assembly clearance of the sliding gears. The extracting performance is superior to Daubechies orthonormal wavelet and DTCWT constructed purely in the time domain.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2013年第3期7-12,共6页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(51275382 1117602) 高校博士点专项基金资助项目(20110201130001)
关键词 装配间隙 能量泄漏 双树复小波 滑移齿轮 assembly clearance energy leakage dual tree complex wavelet sliding gear
  • 相关文献

参考文献11

  • 1LEI Yaguo, KONG Detong, LIN Jing, et al. Fault detection of planetary gear boxes using new diagnostic parameters [J]. Measurement Science and Technolo- gy, 2012, 23(5): 1-10.
  • 2何正嘉,訾艳阳,陈雪峰,王晓冬.内积变换原理与机械故障诊断[J].振动工程学报,2007,20(5):528-533. 被引量:27
  • 3WANG Shibin, HUANG Weiguo, ZHU Zhongkui. Transient modeling and parameter identification based on wavelet and correlation filtering for rotating ma chine fault diagnosis [J]. Mechanical Systems and Sig- nal Processing, 2011, 25(4): 1299-1320.
  • 4SELESNICK I W, BRARNIUK R G, KINGBURY N G. The dual tree complex wavelet transform [J]. IEEE Signal Processing Magazine, 2005, 22(6): 123- 151.
  • 5KINGSBURY N G. Complex wavelets and shift invar iance [C]//lEE Colloquium on Time-Scale and Time- Frequency Analysis and Applications. London, UK: IET, 2000- 1-10.
  • 6KINGSBURY N G. Design of q-shift complex wave- lets for image processing using frequency domain ener gy minimization[C]//IEEE International Conference on hnage Processing. Piscataway, NJ, USA: IEEE, 2003: 1013-1016.
  • 7WANG Yanxue, HE Zhengjia, ZI Yanyang. Enhance ment of signal denoising and multiple fault signatures detecting in rotating machinery using dual-tree complex wavelet transform [J]. Mechanical Systems and Signal Processing, 2010, 24(1): 119-137.
  • 8DAUBECHIES I. Ten lectures on wavelets, CBMS- conference lecture notes [M]. Philadelphia, USA: SI- MA, 1992.
  • 9PENG Zhike, JACKSON R R, CHU Fulei, et al. On the energy leakage of discrete wavelet transform [J]. Mechanical Systems and Signal Processing, 2009, 23 (2) : 330-343.
  • 10MALLAT S. A wavelet tour of signal processing [M]. 2nd ed. New York, USA= Academic Press, 1999.

二级参考文献10

  • 1杨力华,戴道清,黄文良等译.信号处理的小波导引[M].(Mallat S.A wavelet tour of signal processing.Second Edition,1999).北京:机械工业出版社,2002.
  • 2Zhang L, Gao R X, Lee K B. Spindle health diagnosis based on analytic wavelet enveloping [J]. IEEE Transactions on Instrumentation and Measurement,2006, 55(5): 1 850-1 858.
  • 3Sanz J, Perera R, Huerta C. Fault diagnosis of rotating machinery based on auto-associative neural networks and wavelet transforms[J]. Journal of Sound and Vibration, 2007, 302(4-5): 981--999.
  • 4Peng Z K, Chu F L, Tse P W. Singularity analysis of the vibration signals by means of wavelet modulus maximal method[J]. Mechanical Systems and Signal Processing, 2007, 21(2):780--794.
  • 5Sweldens W. The lifting scheme: A construction of second generation wavelet constructions[J]. SIAM J. Math. Anal. 1997, 29(2):511--546.
  • 6Geronimo J S, Hardin D P, Massopust P R. Fractal function and wavelet expansions based on several scaling functions[J]. Journal of Approximation Theory, 1994,78:373--401.
  • 7Strela V, Walden A T. Orthogonal and biorthogonal multiwavelets for signal denoising and image compression[J]. Proc SPIE, 1998, 3 391: 96--107.
  • 8Vasily Strela, Peter Niels Heller, Gilbert Strang, et al. The application of multiwavelet filterbanks to image processing[J]. IEEE Transactions on Image Processing, 1999, 8: 548--563.
  • 9Khadem S E, Rezaee M. Development of vibration signature analysis using multiwavelet systems [J]. Journal of Sound and Vibration, 2003, 261: 613-- 633.
  • 10Geronimo J S, Hardin D P, Massopust P R. Construction of orthogonal wavelets using fractal interpolation functions[J]. SIAM Journal of Mathematical Analysis,1996,27:1 158--1 192.

共引文献26

同被引文献78

引证文献9

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部