期刊文献+

一种动态的移动社交网络拓扑模型 被引量:3

A Dynamic Mobile Social Network Topology Model
在线阅读 下载PDF
导出
摘要 针对移动社交网络的动态性、用户不同重要性和信息交互有向性,基于4种初始网络提出能准确描述移动社交网络结构的拓扑模型。采用随机游走理论和改进的PageRank算法,引入过渡概率使每两时步之间的网络拓扑结构相互联系。通过PageRank算法得到节点的势,进而求出概率过渡矩阵,利用随机游走理论由上一时步边存在概率矩阵和概率过渡矩阵得到当前时步边存在概率矩阵,每一时步动态地增加一个节点并检验是否有离开的节点。仿真结果显示,该模型在4种初始网络下得到的网络拓扑结构,入度、出度、势分布以及度-势相关性均具有明显幂律特性,表明随机游走理论和改进的PageRank算法能较准确描述移动社交网络,具有一定的实践意义。 A topological model that can describe the mobile social network accurately is proposed based on four initial networks considering the dynamic of social network,the different importance of users and the direction of information interaction.Random walking theory and improved PageRank algorithm are adopted,and transition probability is introduced to associate the network topological structure between two time-steps. Firstly,PageRank algorithm is used to obtain the strength of the nodes in order to get the probability transition matrix.Then random walking theory is used to get the current time-step edge existence probability matrix based on the last time-step edge existence probability matrix and the probability transition matrix.During each time-step,a node is added and it is checked if there is any departure node.Finally,simulation model is used to simulate the four initial networks in in-degree,out-degree,strength distribution and the correlation between degree and strength.The results indicate that the four initial networks' in-degree,out-degree,strength distribution and the correlation between degree and strength show obvious power-law character. It shows that the random walking theory and improved PageRank algorithm can describe the mobile social network better,which is of certain practical significance.
出处 《计算机工程》 CAS CSCD 2014年第9期124-129,142,共7页 Computer Engineering
基金 国家自然科学基金资助项目(60973136 61073164) 吉林省科技发展计划青年科研基金资助项目(201101033) 吉林大学国家级创新基金资助项目(2012A53143)
关键词 社交网络 网络拓扑 随机游走 PAGERANK算法 过渡概率 仿真模型 social network network topology random walking PageRank algorithm transition probability simulation model
  • 相关文献

参考文献13

  • 1刘衍珩,李飞鹏,孙鑫,朱建启.基于信息传播的社交网络拓扑模型[J].通信学报,2013,34(4):1-9. 被引量:26
  • 2Waxman B M. Routing of Multiple Connections [J]. IEEE Journal on Selected Areas in Communication, 1998,6(9):1617-1622.
  • 3Zegura E W,Calvert K L,Bhattacharjee S. How to Model an Internetwork [C]/ / Proceedings of the 15th Annual Joint Conference of the IEEE Computer Societies. San Fransisco,USA:IEEE Press,1996:594-602.
  • 4Watts D J, Strogatz S H. Collective Dynamics of ‘ Small-world ’ Networks [J]. Nature, 1998, 393 (6684):440-442.
  • 5Faloutsos M, Faloutsos P, Faloutsos C. On Power-law Relationships of the Internet Topology[C]/ / Proceedings of SIGCOMM’99. [S. l.]:ACM Press,1999:251-262.
  • 6Barabasi A,Albert R. Emergence of Scaling in Random Networks[J]. Science,1999,286(5439):509-512.
  • 7赵国,宋建成.Google搜索引擎的数学模型及其应用[J].西南民族大学学报(自然科学版),2010,36(3):480-486. 被引量:6
  • 8黄德才,戚华春.PageRank算法研究[J].计算机工程,2006,32(4):145-146. 被引量:69
  • 9杨莉.网络拓扑模型的研究[J].湖北第二师范学院学报,2008,25(8):1-5. 被引量:2
  • 10王德广,周志刚,梁旭.PageRank算法的分析及其改进[J].计算机工程,2010,36(22):291-292. 被引量:43

二级参考文献65

共引文献168

同被引文献25

  • 1ZHENG X,LI T,FANG Y.Strategy of fast and light-load cloud-based proactive benign worm countermeasure technology to contain worm propagation[J].The Journal of Supercomputing,2012,62(3):1451-1479.
  • 2BARTHéLemy M,BARRAT A,PASTOR-SATORRAS R,et al.Velocity and hierarchical spread of epidemic outbreaks in scale-free networks[J].Physical Review Letters,2004,92(17):178701.
  • 3ZOU C C,GONG W,TOWSLEY D.Worm propagation modeling and analysis under dynamic quarantine defense[C]//Proceedings of the 2003 ACM workshop on Rapid malcode.ACM,2003:51-60.
  • 4YAN X,ZOU Y.Optimal internet worm treatment strategy based on the two-factor model[J].ETRI Journal,2008,30(1):81-88.
  • 5CASTELLANO C,PASTOR-SATORRAS R.Thresholds for epidemic spreading in networks[J].Physical Review Letters,2010,105(21):218701.
  • 6MISHRA B K,JHA N.SEIQRS model for the transmission of malicious objects in computer network[J].Applied Mathematical Modelling,2010,34(3):710-715.
  • 7GAN C,YANG X,LIU W,et al.A propagation model of computer virus with nonlinear vaccination probability[J].Communications in Nonlinear Science and Numerical Simulation,2014,19(1):92-100.
  • 8PANDEY S K,MISHRA B K,SATPATHY P K.A distributed time delay model of worms in computer network[J].Networking and Communication Engineering,2011,3(6):441-447.
  • 9CHEN T,ZHANG X,WU Y.FPM:four-factors propagation model for passive p2p worms[J].Future Generation Computer Systems,2014,36:133-141.
  • 10MISHRA B K,PANDEY S K.Dynamic model of worms with vertical transmission in computer network[J].Applied Mathematics and Computation,2011,217(21):8438-8446.

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部