期刊文献+

基于稀松模糊定位算法的网络入侵特征检测 被引量:3

Network Intrusion Feature Detection Based on the Poor Fuzzy Localization Algorithm
在线阅读 下载PDF
导出
摘要 提出了一种基于稀松模糊定位算法的网络入侵特征检测算法。新算法通过采集初始网络入侵特征,组建特征集合。利用稀松运动特征匹配算法最大程度上纠正由于特征模糊带来的弊端。保证跟踪匹配过程中,运用较少的入侵特征点完成后期的多个匹配,大幅降低匹配时间,消除匹配误差问题,通过将全局搜索和局部搜索机制有机地结合,保证检测的准确性。实验结果表明,利用本文算法进行入侵检测,能够有效提高检测的准确性。 This paper proposes a fuzzy positioning algorithm based on poor network intrusion feature detection algorithm. The new algorithm through the acquisition of initial network intrusion characteristics, a feature set. Using poor motion feature matching algorithm on the maximum correct due to the disadvantages of the fuzzy characteristics bring. Ensuring the tracking matching process, the use of less invasion of feature point matching complete later more and greatly reduce matching time, eliminate matching error problem, the global search and local search mechanism of organic combine, guarantee the accuracy of the test. The experimental results show that this algorithm using intrusion detection, and it can effectively improve the accuracy of detection.
作者 徐振华
出处 《科技通报》 北大核心 2014年第2期233-235,共3页 Bulletin of Science and Technology
基金 教育部高职高专电子信息类教学指导委员会项目(GZ31)
关键词 网络攻击 节点定位 约束模型 network attack node localization constraint model
  • 相关文献

参考文献5

二级参考文献87

  • 1穆成坡,黄厚宽,田盛丰.入侵检测系统报警信息聚合与关联技术研究综述[J].计算机研究与发展,2006,43(1):1-8. 被引量:70
  • 2李善仓,张德运,马富海,张克旺.基于分布式加权多维定标的节点自身定位算法[J].西安交通大学学报,2006,40(12):1388-1392. 被引量:3
  • 3常卫东,王正华,鄢喜爱.基于集成神经网络入侵检测系统的研究与实现[J].计算机仿真,2007,24(3):134-137. 被引量:29
  • 4周荃,王崇骏,王珺,周新民,陈世福.基于人工智能技术的网络入侵检测的若干方法[J].计算机应用研究,2007,24(5):144-149. 被引量:33
  • 5Bulusu N. Self-Configuring localization systems [Ph.D. Thesis]. Los Angeles: University of California, 2002.
  • 6Welch G, Bishop G, Vicci L, Brumback S, Keller K, Colucci D. The HiBall tracker: High-Performance wide-area tracking for virtual and augmented environments. In: Proc. of the ACM Symp. on Virtual Reality Software and Technology. London: ACM Press, 1999. 1-11. http://www.cs.unc.edu/~welch/media/pdf/VRST99_HiBall.pdf
  • 7Sawides A, Han C-C, Srivastava MB. Dynamic fine-grained localization in ad-hoc networks of sensors. In: Proc. of the 7th Annual Int'l Conf. on Mobile Computing and Networking. Rome: ACM Press, 2001. 166-179. http://citeseer. ist.psu.edu/savvides01dynamic.html
  • 8Hazas M, Ward A. A novel broadband ultrasonic location system. In: Borriello G, Holmquist LE, eds. Proc. of the 4th Int'l Conf.on Ubiquitous Computing. Goteborg: Springer-Verlag, 2002. 264-280. http://www.viktoria.se/ubicomp/ap.html
  • 9Hazas M, Ward A. A high performance privacy-oriented location system. In: Titsworth F, ed. Proc. of the 1st IEEE Int'l Conf. on Pervasive Computing and Communications. Fort Worth: IEEE Computer Society, 2003. 216-233. http://www.comp.lancs.ac.uk/~hazas/Hazas03_AHighPerformancePrivacy-OrientedLS.pdf
  • 10Doherty L. Algorithms for position and data recovery in wireless sensor networks [MS. Thesis]. Berkeley: University of California,2000.

共引文献717

同被引文献25

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部