期刊文献+

混沌蚂蚁群优化求解自由节点B样条曲线拟合 被引量:2

Chaotic ant swarm optimization in solving curve fitting with free knot B-splines
在线阅读 下载PDF
导出
摘要 B样条曲线拟合问题中,将节点作为自由变量可大幅提高拟合精度,但这就使曲线拟合问题转化为求解困难的连续多峰值、多变量非线性优化问题,当待拟合的曲线是不连续、有尖点情况,就更为困难。针对这一问题,基于混沌蚂蚁群优化算法CASO,提出了一种新的B样条曲线拟合算法CASO-DF。该算法结合B样条曲线拟合原理,通过蚁群中蚂蚁个体的混沌行为,调整自由节点位置,通过蚁群的自组织行为自适应地调整内部节点数目,解决了B样条曲线拟合问题。仿真结果表明了CASO-DF算法能够有效实现自由节点B样条曲线拟合,且性能优于其他同类算法。 Data fitting through B-splines improves the accuracy of the solution dramatically if the knots are treated as free variables. However, in this case the problem becomes a very difficult continuous multimodal and multivariate nonlinear optimization problem, especially the unknown functions are discontinuous and cusps. To this end, a Chaotic Ant Swarm Optimization(CASO)based curve fitting with B-splines, called CASO-DF, is proposed to implement the smoothness fitting quickly. The approach is devised based on the curve fitting with B-splines using chaotic coordination of a single ant and self-organizing capacity of the whole ant colony. CASO-DF can adaptively adjust knots placement and choose the number of internal knots. Simulation results show that the proposed approach can perform effectively as well as efficiently, and this algorithm has better performance than other similar algorithms.
出处 《计算机工程与应用》 CSCD 2014年第16期177-182,264,共7页 Computer Engineering and Applications
基金 安徽省自然科学基金(No.11040606M151)
关键词 曲线拟合 混沌蚂蚁群优化算法 节点放置 B样条 curve fitting chaotic ant swarm optimization knot placement B-splines
  • 相关文献

参考文献25

  • 1PARK H.An error-bounded approximate method for rep- resenting planar curves in B-splines[J].Computer-Aided Geometric Design, 2004,21 (5) :479-497.
  • 2Li W, Xua S, Zhao G.Adaptive knot placement in B-spline curve approximation[J].Computer-Aided Design, 2005,37 (8) : 791-797.
  • 3周明华,汪国昭.基于遗传算法的B样条曲线和Bézier曲线的最小二乘拟合[J].计算机研究与发展,2005,42(1):134-143. 被引量:28
  • 4郭改文,黄卡玛.模拟自然树生长的竞争算法及在曲线拟合中的应用[J].电子学报,2008,36(9):1839-1843. 被引量:3
  • 5Jing L, Sun L.Fitting B-spline curves by least squares support vector machines[C]//Proc of the 2nd Int Conf on Neural Networks & Brain.[S.l.] : IEEE Press, 2005 : 905-909.
  • 6Park H, Lee J H.B-spline curve fitting based on adaptive curve refinement using dominant points[J].Computer-Aided Design, 2007,39 : 439-451.
  • 7Wang W P, Pottmann H, Liu Y.Fitting B-spline curves to point clouds by curvature-based squared distance mini- mization[J].ACM Transactions on Graphics, 2006,25 (2) : 214-238.
  • 8Burchard H G.Splines(with optimal knots)are better[J]. Applicable Analysis, 1974,3 : 309-319.
  • 9Lyche T,Morken K.A data-reduction strategy for splines with applications to the approximation of functions and data[J].IMA Journal of Numerical Analysis, 1988, 8: 185-208.
  • 10Alhanaty M, Bercovier M.Curve and surface fitting and design by optimal control methods[J].Computer-Aided Design, 2001,33 : 167-182.

二级参考文献28

  • 1张晓伟,刘三阳.一种新的区间-遗传算法[J].电子学报,2007,35(8):1567-1571. 被引量:7
  • 2周明 孙树栋.遗传算法原理及引用[M].北京:国防工业出版社,1999..
  • 3A. Markus, G. Renner, J. Vdncza. Genetic algorithms in free form curve design. Mathematical Methods for Curves and Surfaces, Nashivilte, 1995.
  • 4P. N. Azariadisa, A. C. Nearchoua, N. A. Aspragathosa. An evolutionary algorithm for generating planar developments of arbitrarily curved surfaces. Computers in Industry, 2002, 47(3):357--368.
  • 5M. Manela, N. Thornhill, J. A. Campbell. Fitting spline functions to noisy data using a genetic algorithm. The 5th Int'l Conf. on Cenetic Algorithms, Urbana-Champaign, IL, USA,1993.
  • 6Y. H. Chen, C. Y. Liu. Quadric surface extraction using genetic algorithms. Computer-Aided Design, 1999, 31(1): 101- 10.
  • 7J. Lampinen, J. T. Alander. Shape design and shape optimization by genetic algorithms. Advances in Computational Mechanics with High Performance Computing. Edinburgh, Scotland, 1998.
  • 8J. Lampinen. Cam shape optimization by genetic algorithm.Computer-Aided Design, 2003, 35(8) : 727-737.
  • 9J. M. Lindstrom. Bayesian estimation of free-knot spline using reversible jumps. Computational Statistic & Data Analysis, 2002,41(2) : 255--269.
  • 10M. Grossman. Parametric curve fitting. The Computer Journal,1971, 17(2): 169-172.

共引文献29

同被引文献14

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部