期刊文献+

带创造性思维的混沌蚂蚁群优化算法 被引量:1

Chaotic ant swarm optimization algorithm with creative thinking
原文传递
导出
摘要 针对混沌蚂蚁群优化算法(CASO)容易陷入局部极值和精度低的缺陷,从认知学角度进行分析,将创造性思维(CT)引入CASO算法,提出了一种带创造性思维的混沌蚂蚁群优化算法(CTCASO).基于CT过程的"四阶段"模型,构建了算法框架,改进了位置更新公式,从而使蚂蚁个体在惯性、认知能力的基础上增强了CT能力,提高了蚁群的整体寻优能力.仿真结果表明,所提出的算法搜索能力强、稳定性好,并且未增加新的参数和计算难度. Chaotic ant swarm optimization (CASO) suffers from premature convergence frequently and low accuracy computation. Therefore, the CASO algorithm is analyzed from cognitive science, and a creative thinking (CT) based CASO (CTCASO) algorithm is proposed. Based on the four stages model in CT process, a framework of the CTCASO algorithm is designed, and the evolution model is adapted, which includes a CT model besides the memory model, and the cognitive model in CASO, to improve the optimization capability of ants. The CTCASO algorithm is applied to some well-known benchmarks, and experimental results show that the CTCASO algorithm possesses more powerful search capabilities and robustness, meanwhile it does not introduce new parameters and computational complexity.
作者 李玉英
出处 《控制与决策》 EI CSCD 北大核心 2014年第5期937-940,共4页 Control and Decision
基金 国家自然科学基金项目(61272057 61202434 61170270)
关键词 群智能 混沌蚂蚁群优化算法 创造性思维 基准函数 swarm intelligence chaotic ant swarm optimization algorithm creative thinking benchmark functions
  • 相关文献

参考文献8

二级参考文献29

  • 1李丽香,彭海朋,王向东,杨义先.基于混沌蚂蚁群算法的PID控制器的参数整定[J].仪器仪表学报,2006,27(9):1104-1106. 被引量:22
  • 2李丽香,彭海朋,杨义先,王向东.基于混沌蚂蚁群算法的Lorenz混沌系统的参数估计[J].物理学报,2007,56(1):51-55. 被引量:26
  • 3张立明.人工神经网络的模型及其应用[M].上海:复旦大学出版社,1994..
  • 4HAYAKAWA Y,MARUMOTO A,SAWADA Y.Effects of the chaotic noise on the performance of a neural network model for optimization problems[J].Phys.Rev.E,1995,51(4):2693-2696.
  • 5AIHARA K,TAKABE T,TOYODA M.Chaotic neural networks[J].Phys.Lett.A,1990(144):333-340.
  • 6CHEN L,AIHARA K.Chaotic simulated annealing by a neural network model with transient chaos[J].Neural Networks,1995(8):915-930.
  • 7HASEGAWA M,IKEGUCHI T,AIHARA K,et al.A novel chaotic search for quadratic assignment problems[J].Eur.J Operat.Res.2002(139):543-556.
  • 8LI B,JIANG W.Optimizing complex functions by chaos search[J].Int.J Cybernet.Syst.,1998(29):409-419.
  • 9SOLE R V,MIRAMONTES O,GOODWIN B C.Oscillations and chaos in ant societies[J].Theoretical Biology,1993(161):343-357.
  • 10LI L X,PENG H P,WANG X D,et al.An optimization method inspired by "chaotic" ant behavior[J].International Journal of Bifurcation and Chaos,2006(16):2351-2364.

共引文献84

同被引文献27

  • 1韩崇昭,朱洪艳,段战胜.多源信息融合[M].第2版.北京:清华大学出版社,2010.
  • 2Eberhart R, Kennedy J. A new optimizer using particle swarm theoy[C]. Proc of the 16th Int Symposium on Micro Machine and Human Science. Piscataway: IEEE Seervice Center, 1995: 39-43.
  • 3Kennedy J, Eberhart R. Particle swarm optimization[C]. IEEE Int Conf on Networks. Perth: IEEE Press, 1995: 1942-1948.
  • 4Yin P Y, Yu S S, Wang P E et al. Multi-objective task allocation in distributed computing systems by hybrid particle swarm optimization[J]. Applied Mathematics and Computation, 2007, 184(2): 407-420.
  • 5del Valle Y, Venayagamoorthy G, Mohagheghi S, et al. Particle swarm optimization: Basic concepts, variants and applications in power systems[J]. IEEE Trans on Evolutionary Computation, 2008, 12(2): 171-195.
  • 6Rainer Storn. Designing nonstandard filters with differential evolution[J]. IEEE Signal Processing Magazine, 2005, 22(1): 103-106.
  • 7Park J, Choi K, Allstot D J. Parasitic-aware RF circuit design and optimization[J]. IEEE Trans on Circuits and Systems I: Fundamental Theory and Applications, 2004, 51(10): 1953-1966.
  • 8Mukherjee V, Ghoshal S E Intelligent particle swarm optimized fuzzy PID controller for AVR system[J]. Electric Power Systems Research, 2006, 77(12): 1689-1698.
  • 9Wu H, Sun F C, Sun Z Q, et al. Optimal trajectory planning of a flexible dual-arm space robot with vibration reduction[J]. J of Intelligent & Robotic Systems, 2004, 40(2): 147-163.
  • 10Pavlidis N G, Parsopoulos K E, Vrahatis M N. Computing nash equilibria through computational intelligence methods[J]. J of Computational and Applied Mathematics, 2005, 175(1): 113-136.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部