期刊文献+

基于深度信息和SURF-BoW的中国手语识别算法 被引量:6

Chinese Sign Language Recognition Method Based on Depth Image Information and SURF-BoW
在线阅读 下载PDF
导出
摘要 为实现视频中手语的准确识别,提出一种基于深度图连续自适应均值漂移(DI_CamShift)和加速强健特征词包(SURF-BoW)的中国手语识别算法.该算法将Kinect作为手语视频采集设备,在获取彩色视频的同时得到其深度信息.算法首先计算深度图像中手语手势的主轴方向角和质心位置,通过调整搜索窗口对手势准确跟踪;然后使用基于深度积分图像的OTSU算法分割手势并提取其加速强健特征(SURF),进而构建SURF-BoW作为手语特征并使用SVM识别.通过实验验证该算法在单个手语字母上的最好识别率为99.37%,平均识别率为96.24%. To realize the accurate recognition of sign language in the video, an algorithm based on depth image CamShift( DI_CamShift) and speeded up robust features-bag of words ( SURF-BoW) is proposed. Kinect is used as the sign language video capture device to obtain both of the color video and depth image information of sign language gestures. Firstly, spindle direction angle and mass center position of the depth images are calculated and the search window is adjusted to track gesture. Next, an OTSU algorithm based on depth integral image is used for gesture segmentation, and the SURF features are extracted. Finally, SURF-BoW is built as the feature of sign language and SVM is utilized for recognition. The best recognition rate of single manual alphabet reaches 99 . 37%, and the average recognition rate is up to 96 . 24%.
作者 杨全 彭进业
出处 《模式识别与人工智能》 EI CSCD 北大核心 2014年第8期741-749,共9页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.61075014) 高等学校博士学科点专项科研基金项目(No.20116102110027)资助
关键词 深度图连续自适应均值漂移( DI_CamShift) 加速强健特征词包( SURF-BoW) 深度图像 手语识别 Depth Image CamShift ( DI_CamShift ) Speeded Up Robust Features-Bag of Words ( SURF-BoW) Depth Image Sign Language Recognition
  • 相关文献

参考文献18

  • 1Wachs J P, Kolsch M, Stern H, et al. Vision-Based Hand-Gesture Applications. Communications of the ACM, 2011, 54 (2) : 60-71.
  • 2Ren Z, Yuan J S, Zhang Z Y. Robust Hand Gesture Recognition Based on Finger-Earth Mover's Distance with a Commodity Depth Camera//Proc of the 19th ACM International Conference on Multi- media. Scottsdale, USA, 2011:1093-1096.
  • 3Daliotis P, Stefan A, McMurrough C, et al. Comparing Gesture Recognition Accuracy Using Color and Depth Information [ EB/OL]. [2013-01-30]. http:// eprints, pascal-network, org/ archive/00008428/01/doliotis, petra2011, pdf.
  • 4Chen Q, Georganas N D, Petriu E M. Real-Time Vision-Based Hand Gesture Recognition Using Haar-Like Features// Proc of the IEEE Instrumentation and Measurement Technology Conference. Warsaw, Poland, 2007. DOI : 10.1109/IMTC. 2007. 579068.
  • 5Niebles J C, Wang H C, Li F F, Unsupervised Learning of Human Action Categories Using Spatial-Temporal Words. International Jour- nal of Computer Vision, 2008, 79 ( 3 ) : 299-318.
  • 6Dardas N H, Petriu E M. Hand Gesture Detection and Recognition Using Principal Component Analysis // Proc of the IEEE Interna- tional Conference on Computational Intelligence for Measurement Systems and Applications. Ottawa, Canada, 2011. DOI: 10. 1109/ CIMSA2011.6059935.
  • 7黄康泉,陈壁金,郑博,徐芝琦.Kinect在视频会议系统中的应用[J].广西大学学报(自然科学版),2011,36(A01):308-313. 被引量:33
  • 8Zheng X, Fu M Y, Yang Y, et al. 3D Human Postures Recognition Using Kineet//Proc of the 4th International Conference on Intelli- gent Human-Machine Systems and Cybernetics. Nanchang, China, 2012,1: 344-347.
  • 9Raheja J L, Chaudhary A, Signal K. Tracking of Fingertips and Centers of Palm Using KINECT//Proc of the 3rd International Con- ference on Computational Intelligence, Modeling and Simulation. Langkawi, Malaysia, 2011:248-252.
  • 10朱志亮,刘富国,陶向阳,等.基于积分图和粒子群优化的肤色分割[EB/OL].[2013-01-29].http://www.cnki.net/kcms/detail/11.2127.TP.20130129.1543.016.html.

二级参考文献85

共引文献216

同被引文献40

引证文献6

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部